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Abstract

Automatic generation of Bayesian network (BNs) structures (directed
acyclic graphs) is an important step in experimental study of algorithms
for inference in BNs and algorithms for learning BNs from data. Pre-
viously known simulation algorithms do not guarantee connectedness of
generated structures or even successful genearation according to a user
specification. We propose a simple, efficient and well-behaved algorithm
for automatic generation of BN structures. The performance of the algo-
rithm is demonstrated experimentally.
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1 Introduction

Bayesian networks (BNs) [8, 5] have been widely accepted as an effective for-
malism for inference with uncertain knowledge in artificial intelligent systems
[4]. A BN uses a directed acyclic graph (DAG) to represent the dependence
structure of a set of domain variables and an underlying probability distribu-
tion to quantify the uncertainty of the dependence. A BN can be constructed
manually or learned from data by automatic construction. Once constructed, it
can be used to compute the probability of values for some unobserved variables
given observation of some other variables (called inference). Studies of better
inference algorithms and learning algorithms are two of many active avenues of
research.

The study of inference algorithms often includes testing of performance in
different BNs (e.g., [7]). The study of learning algorithms often involves testing
learning performance using controlled models, where a controlled model may be
a given BN (e.g., [3, 11]). BNs used in these studies may be manually created
or learned from data, but may also be randomly generated. The generation
process creates both a network structure and an underlying probability distri-
bution. The focus of this work is on the generation of the structure. Although
DAGs of a small number of nodes can be simulated by a simple generate-and-
test, it is not a trivial matter to cleanly create large structures with controlled
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topological features, as we shall demonstrate through the literature review. The
contribution of this work is a well-behaved algorithm and a formal analysis of
its properties.

We introduce the necessary terminology in Section 2. In Section 3, we present
an overview of related work. In Section 4, we propose a well-behaved algorithm,
the properties of which are formally analyzed in Section 5. We demonstrate its
performance in Section 6 with experimental implementation and testing.

2 Terminology

For the purpose of this paper, we consider only directed graphs. A directed
graph is denoted by G = (V,E), where V = (vi|0 ≤ i < n, n > 0) is a set of
nodes and E = ((u, v)|u, v ∈ V, u 6= v) is a set of arcs. An arc (u, v) is directed
from u (the tail) to v (the head). The node u is called a parent of v, and v is
called a child of u.

For any node v, the degree d(v) is the number of arcs containing v. The
in-degree d−(v) is the number of arcs with head v, and the out-degree d+(v) is
the number of arcs with tail v. A node v is a root if d−(v) = 0. A node v is a
leaf if d+(v) = 0.

Two nodes u and v are adjacent if (u, v) ∈ E or (v, u) ∈ E. A path is a
sequence of nodes such that each pair of consecutive nodes is adjacent. A path
is a cycle if it contains more than two nodes, and the first node is identical to
the last node. A cycle C is directed if each node in C is the head of one arc in C
and the tail of the other arc in C. A directed graph is acyclic or is a DAG if it
contains no directed cycles. A graph is connected if there exists a path between
every pair of nodes. A graph is a tree if there exists exactly one path between
every pair of nodes; otherwise, the graph is multiply connected.

Given a directed graph G, if for each (vi, vj) ∈ E, we have i < j, then nodes
in G are indexed according to a topological order. For simplicity, we shall say
that G is indexed topologically. G can be indexed topologically if and only if it
is a DAG.

A BN is a triplet (V,G, P ). V is a set of domain variables. G is a DAG

whose nodes are labeled by elements of V . The topology of G conveys the
dependence/independence among variables through a graphical separation rule
called d-separation [8]. P is a probability distribution over V . It is defined by
specifying, for each node v in G, a distribution P (v|π(v)), where π(v) is the
parents of v. More on the semantics of BNs and their applications can be found
in [8, 5, 4].

3 Related work

A randomly generated BN structure should satisfy certain topological features.
First of all, it must be a DAG. A BN models a problem domain where variables
are either directly or indirectly dependent on each other. Hence, the DAG

must be connected. Other basic features include the number of root nodes, the
number of leaf nodes, the sparseness of the graph, etc.

Although simulation of BN structures for experimental study has been widely
used, algorithms used for random generation of DAGs are rarely published (e.g.,
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[1, 6]). We review two published algorithms here:
Spirtes et al. [9] used a simple algorithm to simulate BNs for testing their

learning algorithms. The algorithm takes the average node degree and the
number of nodes as input from which a threshold p is computed. For each pair
of variables, a random number x ∈ [0, 1] is generated. The pair is connected
with an arc if x ≤ p. The algorithm has a complexity of O(n2). However, the
graph produced may be disconnected.

Chu [2] designed an BN simulation algorithm also for testing learning algo-
rithms. The algorithm takes three parameters as input: the number of nodes,
the maximum in-degree d−, and the maximum out-degree d+. For each node
v, d−(v) (≤ d−) is assigned first. Then d−(v) parent nodes are selected from
nodes whose out-degree is less than d+. The algorithm has a complexity of
O(n2). Given the input, it may fail, however, to generate a DAG accordingly
since when choosing a parent for some node v, it may happen that all potential
candidates have already reached out-degree limit d+.

Although DAGs of a small number of nodes can be simulated by a sim-
ple generate-and-test, the above review demonstrates that it is not a trivial
matter to cleanly create large DAGs with controlled topological features. Fur-
thermore, the generation of a DAGcomposed of multiple subDAGs under certain
constraints may be necessary, e.g., in study of algorithms for learning embedded
pseudo-independent models [11] and in study of algorithms for inference in mul-
tiply sectioned Bayesian networks [10]. Generation of such composed structures
should be based on a well-behaved algorithm for generating a single DAG.

In this work, we develop a simple algorithm. It generates, in a single pass,
a connected DAG of a given number of nodes, a given number of roots and a
given maximum in-degree.

4 Simulating DAG structures

We allow the user to specify the total number n of nodes, the total number r of
root nodes, and the maximum in-degree m of any node. Unlike the algorithm
in [2] which accepts and proceeds with any input parameters but may fail to
satisfy them successfully, we identify conditions for unreasonable input which
are then used to reject such input from the user at the outset:

A non-trivial graph must have at least two nodes (n ≥ 2). A DAG has at
least one root, and a connected DAG cannot have all nodes being roots. Hence,
we require 1 ≤ r < n. The in-degree of each node must be less than n. Hence,
we require m < n. To be a connected graph, it must be the case m ≥ 1.

Given the above bounds, r and m still cannot be independently specified.
For instance, given n = 5 and r = 4, the unique connected DAG has a single
child node, which requires m ≥ 4. We provide a constraint on parameters
(n, r,m) specified as follows:

Condition 1 Let n, r, m (n ≥ 2, 1 ≤ r < n, 1 ≤ m < n) be three positive
integers such that

• if r ≥ m, then m (n − r) ≥ n − 1;

• otherwise

m (n −m) +
m (m− 1)− r (r − 1)

2
≥ n − 1.
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Theorem 2 is a necessary condition of a connected DAG. It says that if (n, r,m)
violates Condition 1, then no connected DAG can be constructed. Hence Con-
dition 1 can be used to reject all invalid parameters before construction of a
target DAG starts.

Theorem 2 Let G be a connected DAG of n nodes, r roots and maximum in-
degree m. Then (n, r,m) satisfies Condition 1.

Proof:
Without loss of generality, we assume that G is indexed topologically and

hence v0, . . . , vr−1 are roots. Topological indexing implies that node vi can have
no more than i incoming arcs. Furthermore, each node can have no more than m
incoming arcs. Let k denote the total number of arcs. Then

∑n−1
i=r min(i,m) ≥

k. For any connected graph, k ≥ n−1. Hence we obtain
∑n−1

i=r min(i,m) ≥ n−1.
The summation can be simplified to reduce the complexity of verifica-

tion from linear to constant: If r ≥ m, then min(i, m) = m and we have∑n−1
i=r min(i,m) = m (n − r). If r < m, we have

n−1∑
i=r

min(i, m) =
m−1∑
i=r

i +
n−1∑
i=m

m = m (n −m) +
m (m− 1)− r (r − 1)

2
.

The result now follows. 2

We propose an algorithm to generate a connected DAG given (n, r,m). Its
pseudocode is presented as Algorithm 1. A brief explanation is as follows:

Lines 1 to 3 compute the number e of arcs for the target DAG.
Line 4 specifies v0 to vr−1 as roots. Line 5 specifies the number of incoming

arcs for each nonroot node such that each nonroot has at least one incoming
arc and the total number of arcs in the DAG is e. The number is copied to a
counter in line 6.

The remaining lines add the e arcs to the graph. Line 7 initializes the empty
graph. The for loop in lines 8 through 10 connects nodes vr−1 through vn−1

into a tree with vr−1 as the unique root. The for loop in lines 11 through 13
enlarges the tree by adding v0 to vr−2. Finally, lines 14 through 17 add the
remaining number of arcs (if any) to the tree, making it a multiply connected
DAG of e arcs.

5 Properties of the algorithm

Theorem 2 is a necessary condition of connected DAG. It is still unclear whether
a connected DAG exists given a triple (n, r,m) satisfying Condition 1. Below
we follow the approach of a constructive proof to show that it is indeed the
case. In Theorem 3, we show that given any input that satisfies Condition 1,
Algorithm 1 will return a graph successfully. In Theorems 4 and 5, we show
that the returned graph is a DAG and is connected. In Theorem 6, we show
that the returned graph is consistent with the given input (n, r,m).

Theorem 3 Given any valid input, Algorithm 1 executes to completion.

Proof:
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Algorithm 1
Input: (n, r,m) such that Condition 1 is satisfied.
Output: Return a directed graph G.
begin
1 if r ≥ m, then arcBound = m (n − r);
2 else arcBound = m (n −m) + 0.5 (m (m− 1)− r (r − 1));
3 select at random the number e of arcs from [n − 1, arcBound];

4 assign each vi (0 ≤ i ≤ r − 1) an in-degree d−(vi) = 0;
5 assign each vi (i ≥ r) an in-degree d−(vi) from [1,min(i,m)]

such that
∑n−1

i=r d−(vi) = e;
6 for each vi (i ≥ r), set p(vi) (the number of parents

left to connect) to d−(vi);

7 set G = (V,E) where V = {vi|0 ≤ i ≤ n − 1} and E = ∅;
8 for i = r to n − 1, do
9 insert (vj , vi) in E, where j is chosen randomly from [r − 1, i− 1];
10 decrement p(vi);
11 for i = 0 to r − 2, do
12 insert (vi, x) in E, where x is chosen randomly from the

set {vj |r ≤ j ≤ n − 1 and p(vj) ≥ 1};
13 decrement p(x);
14 for i = r to n − 1, do
15 while p(vi) ≥ 1, do
16 insert (x, vi) in E, where x is chosen randomly from the

set {vj |0 ≤ j ≤ i− 1 and (vj , vi) 6∈ E};
17 decrement p(vi);
18 return G;
end

Lines 1 to 3 compute the number of arcs. They will succeed since the input
satisfies Condition 1 and ensures arcBound ≥ n − 1 (Theorem 2).

Line 4 will succeed since 1 ≤ r < n. For line 5, we have min(i,m) ≥ 1 since
r ≥ 1 and m ≥ 1. From the proof of Theorem 2, d−(vi)s can be found to make
the equation hold.

Line 9 in the for loop will succeed since r− 1 ≥ 0 and i− 1 ≥ r− 1. Line 10
will succeed since p(vi) ≥ 1 by line 5. The loop will add n− r arcs to G. Since
e ≥ n−1 (line 3), there are at least (n−1)− (n− r) = r−1 arcs not yet added.
Hence lines 11 through 13 will succeed, which add exactly r − 1 arcs to G.

Each iteration of the last for loop is executed conditioned on p(vi) ≥ 1. No
matter the condition holds or not, it always succeeds. 2

Theorem 4 The graph G returned by Algorithm 1 is a DAG and is topologically
indexed.

Proof:
Arcs are added to G in lines 9, 12 and 16. For each arc (vi, vj) added, we

have i < j and hence G is acyclic and is topologically indexed. 2

Theorem 5 The DAG G returned by Algorithm 1 is connected.
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Proof:
First, we show that lines 8 to 10 connect vr−1 through vn−1. In the first

iteration of the for loop, (vr−1, vr) is added, making the two nodes connected.
In the second iteration, either (vr−1, vr+1) or (vr, vr+1) is added, making the
three nodes vr−1, vr, vr+1 connected. In each of the remaining iteration, one
additional node is connected to the above connected subgraph, and hence the
for loop connects vr−1 through vn−1.

In lines 11 through 13, each of the remaining r− 1 roots is connected to the
above connected subgraph. Since arcs are only added (vs. deleted) afterwards,
the returned graph G is connected. 2

Theorem 6 The DAG G returned by Algorithm 1 satisfies the parameters
(n, r,m).

Proof:
Line 7 sets the number of nodes to n.
Lines 4 and 5 set the in-degrees of only v0 to vr−1 to zero. In the remaining

part of the algorithm, these nodes are given no parents, but each other node is
given at least one parent (lines 8 to 10). Hence G has exactly r roots.

Line 5 assigns an in-degree to each node that is less than or equal to m,
which is respected in the remaining part of the algorithm. Hence the parameter
m is satisfied. 2

The above four theorems imply that given any input (n, r,m) that observes
Condition 1, Algorithm 1 guarantees to return a connected DAG accordingly.
Hence, Condition 1 is both necessary and sufficient to construct a connected
DAG.

We now analyze the complexity of Algorithm 1. The complexity of lines
1 through 6 is O(n). Lines 7 through 17 have exactly e nontrivial iterations.
From lines 1, 2 and 3, it is easy to see that the complexity is O(m n). Hence the
complexity of Algorithm 1 is O(m n). It is more efficient than both algorithms
in [9, 2].

It is worth mentioning that this algorithm requires no backtracking (i.e.,
trial and error), and is hence easy to comprehend. This also contributes to its
efficiency.

6 Experimental results

The algorithm has been implemented in Java as one module in the Webweavr-
III toolkit [4]. Below we demonstrate the performance using a few different sets
of parameters.

Our implementation enforces the necessary conditions developed in Sec-
tion 4. It checks the user input before proceeding to execute Algorithm 1. The
following shows rejection of two sets of invalid input which may look reasonable
to a user:

spither[339]% java RandBn.RandBn 50 10 1 jk.bn
n=50 r=10 m=1 file=jk.bn
Invalid input entered.
spither[340]% java RandBn.RandBn 50 30 2 jk.bn
n=50 r=30 m=2 file=jk.bn
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Invalid input entered.

In the following, we show four DAGs generated with valid input. They are
displayed using the Editor module of Webweavr-III. Figure 1 (left) is a DAG

generated using the parameters (10, 1, 1); it is a tree with a single root. Figure 1
(right) contains more nodes. It is also a tree but has more roots.

Figure 1: Left: a single-rooted tree simulated with (10, 1, 1). Right: a multi-
rooted tree simulated with (30, 10, 2).

Figure 2 (left) is a multiply connected DAG with a few undirected cycles.
It is generated by (30, 10, 2). Figure 2 (right) is also multiply connected but is
much more densely connected due to the larger m value.

Figure 2: Left: a sparse multiply connected DAG simulated with (30, 10, 2).
Right: a dense multiply connected DAG simulated with (30, 10, 4).

7 Conclusion

We have presented a simple algorithm to simulate the structure of a BN. It
creates randomly a connected DAG with a given number n of nodes, a given
number r of roots and a given maximum in-degree m. We have identified a
necessary and sufficent condition of the input parameters to construct such a
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DAG. Unlike other known algorithms which may fail to generate a connected
DAG with a given requirement, our algorithm, equipped with this condition,
will reject any invalid input and guarantees successful generation in a single
pass without backtracking. It is also more efficient than existing algorithms,
with a complexity of O(m · n) instead of O(n2). The performance has been
demonstrated through experimental implementation and testing.
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