
TUGboat, Volume 0 (2060), No. 0 1001

Using the RPM package manager
for (LA)TEX packages

Tristan Miller

Abstract

RPM is a package management system which pro-
vides a uniform, automated way for users to install,
upgrade, and uninstall programs. Because RPM is
the default software distribution format for many
operating systems (particularly GNU/Linux), users
may find it useful to manage their library of TEX-
related packages using RPM. This article explains
how to produce RPM files for TEX software, either
for personal use or for public distribution. We also
explain how a (LA)TEX user can find, install, and re-
move TEX-related RPM packages.

1 Background

1.1 The evolution of package management
systems

In the first decade or two of personal computing,
most software was distributed on and run directly
from floppy disks. Users lucky enough to have a
hard drive could copy the contents of these floppies
into a directory on their hard disk and run it from
there. When a user wanted to delete the program,
he had to remember which directory he had copied
it to, find it in his file system, and manually delete
it, taking care to first preserve any data files he had
created.

As programs and hard disk capacities grew in
size, software was increasingly distributed on multi-
ple floppy disks or (later) on a CD-ROM. Vendors
would provide tools — usually simple shell scripts —
to automate the process of creating a directory on
the hard drive, copying the contents of each floppy
to it, configuring the installed copy of the program,
and then finally deleting it when the user requested
that it be uninstalled.

These tools grew in sophistication along with
the underlying operating systems (OSes), which by
the 1990s had begun to provide standard hardware
drivers and graphical interface toolkits for third-
party software to use. Now software installation pro-
grams could not merely copy themselves to the hard
drive; they also had to search for the presence and lo-
cation of requisite system and third-party software,
register themselves with the OS so that they too
could be found by other programs, and create icons
for the user in the system menu or desktop. Some
of the better installers would also do sanity checks
such as making sure the user didn’t install two copies

1002 TUGboat, Volume 0 (2060), No. 0

of the same software package, or automatically de-
tecting and upgrading older installed versions of the
software. With the advent of dial-up bulletin board
systems and eventually home Internet access, it be-
came important for software to be downloadable in
a single file rather than as dozens or hundreds of
individual files as was the case with physical media.

Because each vendor wrote its own installation
program, users often found themselves confused by
different interfaces and lacking a single tool with
which to install, upgrade, and remove software. To
remedy this, each operating system developed its
own standard software package management tool to
be used by all users and vendors. Software devel-
opers can now distribute their programs in specially
prepared packages containing the source code and/
or binary executables for the software along with
important metadata such as the software’s name,
version number, vendor, and dependencies on other
software. Packages might also include checksums
or cryptographic signatures which the package man-
agement system can use to verify that they were not
corrupted or tampered with during distribution.

Users install and remove these packages using
standard system software, which keeps a database
of all installed packages and makes sure that all de-
pendencies are met— for example, by automatically
fetching prerequisite packages, or warning the user if
he is about to remove a package that other installed
software depends on.

1.2 Package management and TEX

Unfortunately for fans of quality typesetting, TEX
and friends are currently stuck in the Dark Ages of
software package management. Though TEX distri-
butions now mostly conform to the TEX Directory
Structure [8], which specifies standard locations for
the installation of certain types of files, there is cur-
rently no standard package format or associated tool
for installing, upgrading, and removing macro pack-
ages, styles, classes, scripts, fonts, documentation,
and other TEX-related paraphernalia available on
CTAN and elsewhere.

As a result, users who download new packages
must themselves check for prerequisites, manually
process .ins and .dtx files, create the appropri-
ate directories in their texmf tree, copy the files in,
and perform necessary post-installation configura-
tion (such as running texhash). Worse yet, when a
user wishes to uninstall a package, he must manu-
ally remove the files, often from multiple directories.
This usually entails consulting the original package
installation instructions to help remember what got
installed where.

Fortunately, until such time as the TEX commu-
nity develops and settles on its own package manage-
ment standard, users can avail themselves of their
operating system’s native package management sys-
tem for the maintenance of TEX packages.1 In this
article, we describe how to do this using the RPM

Package Manager, a packaging system originally de-
veloped by Red Hat and now in widespread use on
several operating systems.

1.3 RPM versus other package managers

RPM has a number of good features to recommend
itself to TEX package management. Most impor-
tant is its portability— RPM enjoys the status of
being the official package format specified by the
Linux Standard Base [4], meaning that any LSB-
compliant GNU/Linux distribution can handle RPM

packages. Distributions which use RPM by default
include Aurox, Fedora Core, Lycoris, Mandriva (for-
merly Mandrake), PCLinuxOS, PLD, Red Flag, Red
Hat, and SUSE. Distributions which use a different
native package format but which can handle RPM

by virtue of their LSB compliance include Debian,
MEPIS, Slackware, and Ubuntu.

However, RPM is by no means limited to GNU/
Linux operating systems. The RPM tools have been
ported to Mac OS X, Novell Netware, and some com-
mercial Unixes. Because the tools and file format
specifications are released under a free license, it is
possible to reimplement them on virtually any oper-
ating system. In fact, some work has already gone
into porting RPM to Microsoft Windows, with some
rudimentary tools available now.

It bears mention, however, that there are many
alternatives to RPM the user may wish to consider.
At least one TEX distribution, MiKTEX for MS-
Windows, provides its own packaging utility, mpm
[6, §§3.2 and A.9], which has much the same func-
tionality as RPM. However, mpm works only with
the MiKTEX distribution, and moreover is a net-
work tool which fetches packages from some central
repository. As far as the present author is able to
determine, it is not possible for package authors to
create and distribute their own MikTEX packages.

Another alternative is to use your operating
system’s native package management system. In
many cases, this requires purchasing the system’s of-
ficial software development kit (SDK). (In the case

1 In this document “TEX” refers to the entire TEX sys-
tem, including LATEX, METAFONT, BibTEX, and other com-
ponents. Similarly, a “TEX package” here means any set of
related files distributed, installed, and maintained as a unit.
This meaning includes but is not limited to LATEX2ε pack-
ages, which are style files supplementing a document class.

TUGboat, Volume 0 (2060), No. 0 1003

of Microsoft Windows, this SDK can be downloaded
for free, though it requires a gigabyte of hard drive
space and comes with a restrictive license.) Another
disadvantage is that the distributed packages are of-
ten bundled as executable files, adding considerable
overhead (possibly several megabytes) to the size of
the package. (Consider that most TEX packages are
only a few kilobytes in size.) Users may also be wary
of running executables for fear of viruses or spyware
which the packager may have deliberately or unwit-
tingly included.

Users of Mac OS X will be pleased to note that
there exists an unofficial package management sys-
tem, i-Installer,2 which enjoys notable popularity
among TEX users on the Mac. The author of this
tool provides i-Installer packages, or i-Packages, for
a number of TEX packages. Furthermore, the i-
Installer distribution includes tools for users to cre-
ate their own i-Packages.

1.4 About this article

This article makes liberal use of illustrative exam-
ples to help the reader understand how to use the
RPM packaging tools. To help distinguish between
various types of computer input and output, we em-
ploy the following typographical conventions:

• When depicting an interactive shell session, any
text set in a teletype font marks that output
by the computer, and bold teletype indicates
text input by the user. At the beginning of
a line, the # character indicates the superuser
(root) shell prompt, while the $ character in-
dicates the shell prompt for a normal user ac-
count.

• Other instances of computer input and output
are rendered in a teletype font. Placeholders
for arguments the user is expected to specify as
appropriate are rendered 〈like_this 〉.

• The actual contents of configuration files cre-
ated by the user are set in small teletype text

surrounded by a box.
In §2, we give a brief overview of the RPM

command-line interface and how it’s used to install,
upgrade, and remove packages. It is aimed at novice
users who simply want to know how to install or re-
move a TEX RPM package they found on the Inter-
net. Readers already familiar with installing RPM

packages may wish to skip this section.
Section 3 describes how you can create RPM

packages for existing TEX packages; this information
is likely to be of greatest interest to package devel-
opers and distributors, but also to advanced TEX

2 http://ii2.sourceforge.net/

gnomovision︸ ︷︷ ︸- 1.2︸︷︷︸ - 273︸︷︷︸ . i586︸ ︷︷ ︸ .rpm

package name version release architecture

Figure 1: A sample RPM filename

users who want to avoid the hassle of manual pack-
age management. This section assumes that you
have a basic familiarity with downloading and man-
ually installing TEX packages.

Finally, §4 briefly touches on some advanced
topics for RPM packagers and distributors.

2 RPM basics

2.1 RPM files and where to find them

Software for use with RPM is distributed in files
known as RPM packages, which have the filename
suffix .rpm. In order to distinguish between dif-
ferent versions of a package, a standard file nam-
ing scheme is employed which encodes the package
name, its version and release number, and the com-
puter architecture it is designed to work with. The
syntax is illustrated with an example in Figure 1.

• The package name indicates the name of the
software (or in our case, TEX package) packaged
in the RPM.

• The version is the version of the software to be
installed.

• The release field is used to indicate revisions of
the packaging of that particular version of the
software. For instance, sometimes the person
packaging the software will make an error, such
as leaving out a particular file. Every time the
software is repackaged to fix such an error, its
release number is increased.

• The architecture field indicates the type of com-
puter processor the software is designed to work
with. For most executable programs, this field
will have a value such as i586 (Intel 586), ppc
(PowerPC), or sparc (Sun SPARC). Most TEX
packages, however, do not depend on any par-
ticular computer processor and therefore have
the value noarch in this field.

One important property of an RPM package
which is not typically included in its filename is the
operating system it is designed to work with. Dif-
ferent Unix and GNU/Linux distributions, such as
SUSE and Fedora Core, may have slightly different
conventions regarding how and where programs and
documentation are installed. Therefore it is always
important to install only those RPM packages which
are meant for the OS distribution you are using.

http://ii2.sourceforge.net/

1004 TUGboat, Volume 0 (2060), No. 0

(Usually whatever web page or FTP site you find
the RPM on will indicate which distribution it is for.)
This caveat is compounded by the fact that differ-
ent TEX distributions may be available for the same
operating system, and that these distributions may
also have different conventions for how and where
to install files, and may come with different default
packages.

Therefore, when looking for TEX RPMs, you
must ensure not only that they are specific to your
operating system, but also to your TEX distribu-
tion. To help alleviate this problem, we recommend
that packagers and distributors of RPMs prepend
the name of the TEX distribution to the RPM pack-
age name. Thus, for example, an RPM package for
the LATEX package breakurl for use with the teTEX
distribution would have a filename such as
tetex-breakurl-0.04-1.noarch.rpm

However, whether this RPM is meant for SUSE, Red
Hat, or some other GNU/Linux distribution must be
indicated separately.

Most developers writing programs for Unix-like
systems will provide RPM packages of their software
on their official website. Alternatively, there exist
several Internet search engines, such as rpmfind.
net, which index RPM files. Currently TEX packages
are not widely available as RPM packages, though
hopefully this article will go some way towards en-
couraging TEX package developers and distributors
to remedy the situation. In the meantime, a num-
ber of LATEX RPMs for the SUSE distribution of
teTEX have been made available on the present au-
thor’s home page at http://www.nothingisreal.
com/tetex.

2.2 Installing, upgrading, and removing
packages

The main utility for manipulating RPM packages is
named, reasonably enough, rpm, and on Unix-like
systems is usually located in the /bin directory.3

rpm is a command-line utility, and we describe its
use in this section. Though it is not difficult to use,
most operating systems provide a graphical interface
to it, so installing or upgrading a package is often
as simple as clicking on the RPM file in your file
explorer.

To install an RPM package you have obtained,
you issue the following command (substituting the

3 This article will hereinafter assume that the user is work-
ing on a GNU/Linux or Unix system; however, most of what
is presented is easily applicable to other operating systems
which support RPM.

actual filename) while logged in as the superuser
(root):4

rpm --install \

gnomovision-1.2-273.i586.rpm

(For more verbose output and a progress meter, the
--verbose and --hash options can also be speci-
fied.) On the other hand, if you haven’t yet down-
loaded the file but know its location on the Internet,
you can tell rpm to fetch it for you via HTTP or FTP:

rpm --install ftp://ftp.foo.de/\

gnomovision-1.2-273.i586.rpm

rpm will then process the named file, make sure that
all its dependencies are met and that no conflicts
are caused, and install it. Once a TEX RPM is in-
stalled, no further work or setup should be needed;
whatever TEX package it installed should be imme-
diately available to your TEX installation. There
should be no need to manually update TEX’s file-
name database (e. g., texhash).

If a certain RPM package is already installed
on your system and you have downloaded a newer
version, you can upgrade the existing installation as
follows:

rpm --upgrade \

gnomovision-1.2-273.i586.rpm

The --erase option uninstalls an RPM package
you have previously installed. Note that you do not
specify the complete package filename; just the name
of the software is used:

rpm --erase gnomovision

Conveniently, rpm will issue a warning if you try to
remove a package which other installed packages re-
quire. You can then decide to remove those packages
as well or abort the process.

2.3 Getting information on packages

rpm also provides the --query option for listing and
getting information on installed packages. Used by
itself and a package name, this option simply prints
out the version and revision number of the pack-
age if it is installed. Alternatively, --query can be
used with auxiliary options to perform various useful
tasks. For example,

rpm --query --info gnomovision

displays the details of the gnomovision package, in-
cluding its size, packaging date, installation date, as
well as its purpose and functionality. Adding the
--list option will also show a list of each file the

4 To fit the formatting of this journal, we sometimes break
lines in shell command examples by using a backslash (\)
followed by a newline. In practice you can type the commands
on a single line, omitting the backslash and newline.

http://rpmfind.net/
http://rpmfind.net/
http://www.nothingisreal.com/tetex
http://www.nothingisreal.com/tetex

TUGboat, Volume 0 (2060), No. 0 1005

Name : tetex-breakurl Relocations: (not relocateable)

Version : 0.04 Vendor: (none)

Release : 1 Build Date: Wed 06 Jul 2005 04:52:35

Install date: (not installed) Build Host: port-3108.kl.dfki.de

Group : Productivity/Publishing/TeX/Base Source RPM: tetex-breakurl-0.04-1.src.rpm

Size : 131758 License: LPPL

Signature : (none)

Packager : Tristan Miller <Tristan.Miller@dfki.de>

URL : http://www.ctan.org/tex-archive/macros/latex/contrib/breakurl/

Summary : An extension to hyperref for line-breakable urls in DVIs

Description :

This package provides a command much like hyperref’s \url that

typesets a URL using a typewriter-like font. However, if the dvips

driver is being used, the original \url doesn’t allow line breaks in

the middle of the created link: the link comes in one atomic piece.

This package allows such line breaks in the generated links.

Note that this package is intended only for those using the dvips

driver. Users of the pdflatex driver already have this feature.

Distribution: SuSE 9.0 (i586)

/usr/local/share/texmf/doc/latex/breakurl/README

/usr/local/share/texmf/doc/latex/breakurl/breakurl.dvi

/usr/local/share/texmf/doc/latex/breakurl/breakurl.pdf

/usr/local/share/texmf/tex/latex/breakurl/breakurl.sty

Figure 2: Output of rpm --query --info --list --package tetex-breakurl-0.04-1.rpm

package will install. (See Figure 2 for sample out-
put of a more realistic package —our example in the
next section, in fact.) Note that by default, the
--query option searches only the database of in-
stalled packages. To use it on a RPM file you have
downloaded, you must use it in conjunction with the
--package option and the filename.5 For example:

rpm --query --info --package \

gnomovision-1.2-273.i586.rpm

Another useful command with --query is
rpm --query --all

which lists all RPM packages installed on the system.
For most ordinary users, the above commands

are all that is required to effectively use rpm. For ad-
vanced operations, consult the rpm man page, or use
whatever graphical interface your system provides.

3 Creating RPM packages

So, you’re a developer who has created a new TEX
package, or perhaps you’re just an ordinary user who
has downloaded something from CTAN and wants to
package it as an RPM. Before you can begin creating
RPM packages, though, you first need to set up a few
things; these need be done only once.

5 Some pagers and file viewers, such as less, understand
the RPM file format; using them to view RPM files will re-
sult in output similar to that of rpm --query --info --list

--package.

3.1 First-time setup

The program used to create RPM packages is named
rpmbuild. Before you can use it, however, you need
to create a workspace for its use. You can do this
with the following shell command:

$ mkdir -p ˜/rpm/{BUILD,SOURCES,\

SPECS,SRPMS,RPMS/noarch}

It’s OK to specify a directory other than ~/rpm if
you wish.

Next, you need to create in your home direc-
tory a configuration file named .rpmmacros which
provides some default information to be used when
building packages; Listing 1 shows a sample. The
%packager line should specify your name and e-mail
address, formatted as shown, so that people can con-
tact you to report bugs or problems with your pack-
age. The %_topdir line should correspond to the
workspace directory you created previously. (If you
are unsure of the full path to your home directory,
the pwd shell command can tell you what it is.)

%packager Tristan Miller <Tristan.Miller@dfki.de>

%_topdir /home/miller/rpm

Listing 1: A sample ~/.rpmmacros file

1006 TUGboat, Volume 0 (2060), No. 0

3.2 Preparing the TEX package source

With the above one-time setup steps complete, you
are now ready to begin building RPM packages. The
first thing to do is to fetch the source to the TEX
package for which you want to create an RPM. If
you are a package developer, we assume you already
have all the files; for those of you creating RPMs
for others’ TEX packages, you will have to download
the files from the author’s web page or from CTAN.
Normally these will be available as a tar.gz or zip
archive.

Let’s assume that we are installing the package
breakurl, which is available at http://ctan.org/
tex-archive/macros/latex/contrib/breakurl.
Follow the “get this entire directory” link, spec-
ify a mirror that supports directory archives, and
download the package into a temporary directory
on your machine, such as /tmp. Then decompress
the archive using unzip or tar as appropriate:

$ cd /tmp

$ tar xzvf breakurl.tar.gz

breakurl/
breakurl/README
breakurl/breakurl.dtx
breakurl/breakurl.ins
breakurl/breakurl.pdf

3.3 Writing the spec file

Next you must prepare a spec file, which is a set
of commands instructing rpmbuild how to compile
the source files and where to install them. spec files
are generally stored in the SPECS subdirectory of the
workspace you created in §3.1, and are composed of
a number of sections, or stanzas:

• the Header stanza, which defines custom macros
and gives basic information about the package;

• the Prep stanza, which unpacks the package and
prepares it for compilation;

• the Build stanza, which provides instructions
for compiling the package;

• the Install stanza, which provides instructions
for installing the package;

• the Files stanza, which lists all the files to be
included in the package distribution;

• the Scripts stanza, which specify programs to
be run before and after installation or uninstal-
lation of the package; and

• the Changelog stanza, which contains a record
of changes made to the RPM package.

In the following subsections we continue with our
breakurl example by building its spec file, named
~/rpm/SPECS/breakurl.spec. We show the various

stanzas as they are being built; the completed spec
file is presented at the end in Listing 9.

3.3.1 The Header stanza

The Header stanza appears, unlabelled, at the be-
ginning of the spec file and typically contains two
kinds of information: macro definitions, and fields
containing important metadata about the package.

Macros. A number of macros are predefined by
your RPM distribution. For example, the macro
%_tmppath is predefined to some temporary direc-
tory in your file system, such as /tmp or /var/
tmp. Other macros are automatically defined by
rpmbuild as it processes the spec file, using in-
formation from the fields you specify. For exam-
ple, rpmbuild assigns to the %name and %version
macros the same values you specify for the Name and
Version fields (see below) so that you can use these
values later on in your spec file.

In addition to these predefined macros, you can
create and use your own custom macros. A macro
definition looks like this:

%define 〈macro_name 〉 〈macro_value 〉
Once a macro has been defined, you can reference it
later with the following syntax:

%{〈macro_name 〉}
It is permissible to use a macro in the definition of
a new macro.6

One useful macro we should define here is the
root of our local TDS tree — that is, where new TEX
packages should be installed on the system [8, §2.3].7

The exact location of this directory varies with both
your OS and TEX distribution, so you will need to
consult the appropriate documentation. The teTEX
distribution on SUSE 9.0, for example, uses /usr/
local/share/texmf, so in that case we would define
a macro as follows:

6 Observant readers will note that what we entered into
our ~/.rpmmacros file in §3.1 were actually macro definitions.

7 Why install to the local tree rather than the main texmf

tree? Consider the case where the TEX distribution includes
version 1.0 of a certain package foo. Say we then produce
an RPM package of version 1.1 of foo which installs to the
main texmf tree rather than the local tree. If the user installs
this RPM and then later decides that version 1.1 is buggy and
removes it, he will be unable to revert to version 1.0 without
reinstalling his TEX distribution. Furthermore, if he does
reinstall his TEX distribution, any other RPM packages that
happened to install themselves in the root texmf tree will
likely be overwritten. Installing new and upgraded versions
of packages in the local tree avoids this problem; new TEX
packages can be installed and removed while preserving older
versions in the root tree. (When two versions of a package
exist, most TEX distributions are configured to prefer the
local-tree version over the root-tree version.)

http://ctan.org/tex-archive/macros/latex/contrib/breakurl
http://ctan.org/tex-archive/macros/latex/contrib/breakurl

TUGboat, Volume 0 (2060), No. 0 1007

Distribution Group Reference

Fedora Core Applications/Publishing [1, §13.2.2]
Mandriva Publishing [5]
PLD Linux Applications/Publishing/TeX

Red Hat Applications/Publishing [1, §13.2.2]
SUSE Productivity/Publishing/TeX/Base [7, §2.5]
Yellow Dog Applications/Publishing

Table 1: Groups for TEX packages by GNU/Linux distribution

%define texmf /usr/local/share/texmf

Fields. Fields are defined with the following syn-
tax:

〈field_name 〉: 〈field_value 〉
The most commonly specified fields are as follows:

Name The name of the RPM package. As explained
in §2.1, we recommend forming the RPM pack-
age name by combining your TEX distribution
name with the name of the TEX package. For
example, a breakurl RPM for teTEX would be
called tetex-breakurl.

Summary A concise, one-line summary of the TEX
package.

Version The version number of the TEX package.
Normally this will be found in a README file
or in the package’s documentation, though in
some cases you may need to examine the pack-
age source code. Sometimes a package will have
a date but no formal version number; in these
cases you should use the date, in the format
〈YYYYMMDD 〉, as the version number.

Release The release number of the RPM package.
Initially, this should be 1; every time you re-
build the RPM package (say, to fix an error
in the spec file), this number should be incre-
mented. Release numbers are specific to each
version of the TEX package, so whenever you
prepare a spec file for a new version of the same
TEX package, the release number should be re-
set to 1.

License The license under which the TEX package
is released. Normally this information will be
found in a file named README or COPYING, or
in the package documentation. Typically the
value for the License field will be LPPL (LATEX
Project Public License), though some packages
are released other ways, such as under the GNU

Public License (GPL) or as public domain. If the
package is released under a custom or unusual
license with no common abbreviation, then it’s

best to write here something like Other or See
package docs.8

Group The category to which this package belongs.
Different OS distributions have different cate-
gorization schemes, so you will need to consult
your distribution’s documentation. Table 1 lists
the groups where TEX packages go for some
common GNU/Linux distributions.

URL The home page of the TEX package. Normally
this will be the package’s location on CTAN.

Requires Any software or other RPM package re-
quired for this package to work. At a minimum,
this field should contain the name of the TEX
distribution you are using. You can also specify
that a certain minimum (or exact) version of a
package is required— for example:

Requires: tetex >= 2.0.2

You can use as many Requires fields as there
are prerequisites for your package, or you can
use a single Requires field and separate the
values with commas.

Distribution The name and version of the OS dis-
tribution for which this RPM is intended. This
information is used by RPM search engines to
properly categorize your package. It is possible
to build RPMs for a distribution other than the
one you are currently running, though this will
require some knowledge of where it expects the
local TDS tree to be rooted.

Source The source archive used to build the pack-
age. This basically corresponds to the zip or
tar.gz file you downloaded from CTAN. How-
ever, it is generally expected that the source be
archived as a tar.bz2 file and given a standard
name of the form 〈name 〉-〈version 〉.tar.bz2,
where 〈name〉 and 〈version〉 are the name and
version, respectively, of the TEX package.9

8 If you are planning on making your RPM package avail-
able to the public, be sure to first check that the license allows
it. Most free software licenses, including the LPPL and GPL,
permit this, though some other licenses may stipulate that
the software cannot be repackaged or redistributed.

9 This is especially true if you intend to distribute
“source” RPMs as well as binary RPMs— see §3.4.

1008 TUGboat, Volume 0 (2060), No. 0

Name: tetex-breakurl

Summary: An extension to hyperref for line-breakable urls in DVIs

Version: 0.04

Release: 1

License: LPPL

Group: Productivity/Publishing/TeX/Base

URL: http://www.ctan.org/tex-archive/macros/latex/contrib/breakurl/

Requires: tetex

Distribution: SuSE 9.0 (i586)

Source: %{name}-%{version}.tar.bz2

BuildRoot: %{_tmppath}/%{name}-%{version}-root

BuildArch: noarch

%define texmf /usr/local/share/texmf

%description

This package provides a command much like hyperref’s \url that

typesets a URL using a typewriter-like font. However, if the dvips

driver is being used, the original \url doesn’t allow line breaks in

the middle of the created link: the link comes in one atomic piece.

This package allows such line breaks in the generated links.

Note that this package is intended only for those using the dvips

driver. Users of the pdflatex driver already have this feature.

Listing 2: The Header stanza for breakurl.spec

Assuming we are working with version 0.04
of breakurl, the contents of this field would be
tetex-breakurl-0.04.tar.bz2. If we want to
use rpmbuild’s pregenerated macros, it would
be %{name}-%{version}.tar.bz2. Since this
file must actually be found by rpmbuild, you
will also have to recompress and rename the
archive from CTAN, and then move it into the
SOURCES subdirectory of your workspace:

$ cd /tmp

$ gunzip breakurl.tar.gz

$ mv breakurl.tar \

tetex-breakurl-0.04.tar

$ bzip2 -9 tetex-breakurl-0.04.tar

$ mv tetex-breakurl-\

0.04.tar.bz2 ˜/rpm/SOURCES

BuildArch The computer architecture the package
is intended to run on. Since most TEX pack-
ages do not contain any binary computer code,
a value of noarch will suffice in most cases.

BuildRoot A temporary directory in which to test
installing the package. Normally this will be de-
clared as %{_tmppath}/%{name}-%{version}-root.

%description A detailed description of the TEX
package, possibly several paragraphs in length.
Often this information can be copied from the
package’s README file. (Strictly speaking, the
%description is not a field, since it is followed
by a newline rather than a colon, and is termi-
nated by the beginning of the Prep stanza.)

These fields can be specified in any order, except
that the %description field must come last.

Listing 2 shows a complete Header stanza for
breakurl.spec.

3.3.2 The Prep stanza

The Prep stanza, which always begins with the line

%prep

contains macros and/or shell commands which pre-
pare the package for compilation. For TEX pack-
ages, this typically involves merely unpacking the
source code archive (specified by the Header stanza’s
Source field) into the temporary build directory.

The RPM system provides the macro %setup for
this purpose; it is usually used with the -q (quiet)
option to suppress unwanted output. The %setup
macro assumes that the source archive unpacks into
a directory named 〈name 〉-〈version 〉 (the actual
name and version being retrieved from the Header
stanza) and will cd into it in preparation for the
next stanza. If your tarball unpacks into a differ-
ent directory, then the option -n 〈dirname 〉 can be
used to specify an alternative directory name.

A sample Prep stanza for breakurl.spec ap-
pears in Listing 3. Note that we specify the op-
tion -n breakurl to %setup. That’s because, as we
saw in §3.2, the breakurl tarball we downloaded
from CTAN unpacked into a directory called simply
breakurl.

TUGboat, Volume 0 (2060), No. 0 1009

%prep

%setup -q -n breakurl

Listing 3: The Prep stanza for breakurl.spec

3.3.3 The Build stanza

The Build stanza begins as follows:
%build

Following this token you should type whatever shell
commands are necessary to build the TEX package.
For most LATEX packages, this will involve running
latex on any ins and dtx files; it may also involve
running bibtex, makeindex, dvips, and other com-
mands. On the other hand, some LATEX packages
come prebuilt as ready-to-install sty and/or cls
files; in such cases the Build stanza will be empty.

You should consult the package’s build instruc-
tions to find out which commands, if any, you need
to run on which files, and manually try them out
yourself on the temporary copy of the package source
you unpacked in §3.2. This way you can find out,
for example, how many times you need to run latex
before all references are resolved, and thus include
the appropriate number of calls to it in the Build
stanza.

A sample Build stanza for breakurl.spec ap-
pears in Listing 4. Note that the tarball already
contained a PDF version of the package documen-
tation, making our processing of breakurl.dtx to
create the DVI documentation somewhat unneces-
sary. However, let’s assume for illustrative purposes
that we wish to include both PDF and DVI versions
of the documentation in our RPM, thus necessitating
the generation of the latter.

%build

latex breakurl.ins

latex breakurl.dtx

latex breakurl.dtx

Listing 4: The Build stanza for breakurl.spec

3.3.4 The Install stanza

After the Build stanza comes the Install stanza. Its
beginning is denoted by the following token:

%install

Like the Build stanza, the Install stanza consists of
shell commands, though this time the purpose is to
copy the generated files into their correct places in
the TEX directory structure (TDS). However, rather
than installing the files into the system TDS (which
can have disastrous effects if there is an error in

the spec file), we instead simulate or “practice”
installing them into a temporary copy of the file
system. This temporary copy was specified by the
BuildRoot field of the Header stanza, the value of
which can be accessed here with the shell variable
$RPM_BUILD_ROOT.

Another component of the Install stanza is a
small script to remove the contents of the BuildRoot
directory after a build. This script begins with

%clean

and usually consists of the command
rm -rf $RPM_BUILD_ROOT

Many packagers prefer to include a copy of this com-
mand as the first command after %install, just to
make sure the BuildRoot is empty.

A sample Install stanza for breakurl.spec ap-
pears in Listing 5.

%install

rm -rf $RPM_BUILD_ROOT

mkdir -p %{texmf}/tex/latex/breakurl

cp breakurl.sty %{texmf}/tex/latex/breakurl

mkdir -p %{texmf}/doc/latex/breakurl

cp README %{texmf}/doc/latex/breakurl

cp breakurl.dvi %{texmf}/doc/latex/breakurl

cp breakurl.pdf %{texmf}/doc/latex/breakurl

%clean

rm -rf $RPM_BUILD_ROOT

Listing 5: The Install stanza for breakurl.spec

3.3.5 The Files stanza

The Files stanza, which begins with the line
%files

lists all the files and directories to be included in
the RPM package. This is important, as during the
build process a number of temporary files (e. g., aux,
log, bbl) may be created, and rpmbuild needs to
know that these can be safely discarded.

The main part of the Files stanza is relatively
simple; it simply consists of a list of files and di-
rectories, relative to the BuildRoot directory where
they were temporarily installed in the Install stanza.
Normally one file or directory per line is specified,
though it is permissible to use wildcards. For exam-
ple, the lines

%{texmf}/tex/latex/mypackage/*.sty
%{texmf}/tex/latex/mypackage/*.cls

specify including all the LATEX style and class files
in the directory $RPM_BUILD_ROOT/%{texmf}/tex/
latex/mypackage.

1010 TUGboat, Volume 0 (2060), No. 0

Be careful when specifying a directory name,
because that indicates to rpmbuild that it should
package all files in that directory. If you just want
to indicate that a particular directory but none of
its files should be packaged, precede the name of the
directory with the %dir macro:

%dir %{texmf}/tex/latex/mypackage/tmp

There are other macros you can use before a file-
name to give important information about the file.
The %doc macro indicates that a file is documen-
tation. (Marking this is important because some
users might want to save space by not installing
the package’s documentation. The rpm --install
command has an auxiliary option, --excludedocs,
to suppress installation of documentation.) Alterna-
tively, the %config macro can be used to mark a file
as being a user-modifiable configuration file. When
upgrading a package, rpm will be careful not to over-
write any such file the user may have painstakingly
modified. Here are some examples:

%doc %{texmf}/doc/latex/foo/guide.dvi
%doc %{texmf}/doc/latex/foo/README
%config %{texmf}/tex/latex/foo/foo.cfg

Finally, it is important to set the ownership and
permissions for the files to be installed. This can be
done collectively for all files by issuing the %defattr
macro at the beginning of the Files stanza, which
has this syntax (on two lines only for this presenta-
tion; the actual source must be all on one line):
%defattr(〈file_permissions 〉,〈owner 〉,

〈group 〉,〈directory_permissions 〉)
Both 〈owner〉 and 〈group〉 will normally be root.
You should specify the file and directory permis-
sions in the standard three-digit octal format used
by chmod. For example, one might specify the di-
rectory permissions as 755, which corresponds to
rwxr-xr-x (i. e., everyone can read and execute the
directory, but only its owner can write to it). In-
stead of specifying an octal value, you can use the
hyphen, -, to tell rpmbuild to package the files and
directories with the same permissions it has in the
BuildRoot tree. To override the default permissions
or ownership on a particular file, you can prefix it
with the %attr macro, which uses the same syntax
as %defattr.

A sample Files stanza for breakurl.spec ap-
pears in Listing 6.

3.3.6 The Scripts stanza

Sometimes, certain system commands need to be ex-
ecuted before or after software is installed or unin-
stalled. This is also true of (un)installing packages
on most TEX distributions, usually because TEX has

%files

%defattr(-,root,root,-)

%{texmf}/tex/latex/breakurl/breakurl.sty

%doc %{texmf}/doc/latex/breakurl/README

%doc %{texmf}/doc/latex/breakurl/breakurl.dvi

%doc %{texmf}/doc/latex/breakurl/breakurl.pdf

Listing 6: The Files stanza for breakurl.spec

to update its file index. On teTEX and other TEX
distributions which use the Kpathsea path search-
ing library, for example, the command texhash or
mktexslr must be run whenever a package is in-
stalled or uninstalled. Such commands can be spec-
ified in the Scripts stanza of the spec file.

Unlike most of the previous stanzas, the be-
ginning of the Scripts stanzas is not marked by a
token. Rather, scripts to be executed before instal-
lation, after installation, before uninstallation, and
after uninstallation can be specified following the
%pre, %post, %preun, and %postun tokens, respec-
tively. Listing 7 shows the Script stanza for our
breakurl.spec file.

%post

texhash

%postun

texhash

Listing 7: The Scripts stanza for breakurl.spec

3.3.7 The Changelog stanza

The Changelog stanza is where you should keep a
human-readable log of changes to the spec file. This
stanza begins with the line

%changelog

and contains a chronological list of entries (most re-
cent first) in this format:

* 〈date 〉 〈name 〉 <〈email 〉> 〈version 〉-〈release 〉
- 〈change made 〉
- 〈other change made 〉...

The 〈date〉 field must be in the following format:

Tue Jul 05 2005

Such a date can be produced with the command

$ date +"%a %b %d %Y"

The initial Changelog stanza for breakurl.spec is
illustrated in Listing 8.

TUGboat, Volume 0 (2060), No. 0 1011

%changelog

* Mon Jul 04 2005 Tristan Miller \

<Tristan.Miller@dfki.de> 0.04-1

- Initial build.

Listing 8: The Changelog stanza for
breakurl.spec (the \ and line break are for
our presentation only)

3.4 Building the RPM

Now that you’ve written the spec and moved the
source tarball (recompressed with bzip2) into your
~/rpm/SOURCES directory, you are finally ready to
build the RPM. Simply cd into the directory where
breakurl.spec resides (~/rpm/SPECS) and run the
following command (logged into your regular ac-
count—not as root!):

$ rpmbuild -ba breakurl.spec

rpmbuild will first scrutinize the spec file for any
syntax errors and abort with an informative mes-
sage if it finds any. If not, you should see the com-
mands you’ve specified in the Build and Install stan-
zas being executed as if you had typed them your-
self. You’ll probably get several pages of LATEX
output plus various other diagnostic messages from
rpmbuild itself. The resulting RPM package will be
written to the file

~/rpm/RPMS/noarch/tetex-breakurl-0.04-1.rpm

Go ahead and examine the file with less, or with
rpm --query --info --list --package, to make
sure that all the package data is correct and that
all files are set to install in the correct places. (The
data should look similar to what is shown in Fig-
ure 2.) If not, you’ll have to figure out where the
error is, re-edit the spec file, increment its Release
number, and try rebuilding.10

Another file produced by rpmbuild,
~/rpm/SRPMS/tetex-breakurl-0.04-1.src.rpm,

is what is known as a source RPM or SRPM. Unlike
the RPM package, which contains only the precom-
piled, ready-to-install TEX package, the SRPM con-
tains the original source tarball and your spec file.
SRPMs are useful for users who want to modify the
TEX package before it is compiled, or for those who
wish to create a new RPM of the same TEX pack-
age for a different OS or TEX distribution and don’t
want to go to the trouble of creating their own spec
file from scratch.

10 The tool rpmlint can assist in debugging RPM

files. It’s available at http://people.mandrakesoft.com/

~flepied/projects/rpmlint/.

Note that rpmbuild does not, by default, install
the RPM package; it only creates one. To actually
install the RPMs you create, you need to invoke the
rpm command as outlined in §2.2.

Once you have created and tested your RPM, it
might be a good idea to save other users the trou-
ble you’ve gone to by publishing it on the web or
on a local FTP server. Eventually it will proba-
bly be spidered by an RPM search engine such as
rpmfind.net so that others can find it. It is also
possible that CTAN may accept submissions of RPM

packages, either now or at some point in the future.

4 Advanced topics

The information presented in this article is suffi-
cient for making basic RPMs for most TEX pack-
ages, though there are many other topics which are
not addressed here. Most importantly, this article
has assumed that the TEX package you are packag-
ing is something like a font or a LATEX package which
contains no executable code. Utilities written in pro-
gramming languages such as Perl, Python, or C, or
those which make use Makefiles or the GNU Auto-
tools must be handled slightly differently; though
the process isn’t necessarily more complicated, there
are too many different cases to cover in an article
of this scope. The reader is therefore referred to
more general-purpose documents on RPM [1, 2, 3]
for dealing with such packages.

Another topic worthy of mention is the use of
cryptographic tools such as PGP and GnuPG to dig-
itally sign and verify RPMs. RPM has built-in sup-
port for this, though because there are many more
applications for digital signatures in the world of
TEXing, we will reserve treatment of it for a future
article on using GnuPG with TEX.

5 Bibliography

[1] Edward C. Bailey. Maximum RPM. Sams, Au-
gust 1997.

[2] Eric Foster-Johnson. Red Hat RPM Guide. Red
Hat Press, March 2003.

[3] Guru Labs. Creating RPMs (student version)
1.0, April 2005.

[4] Linux Standard Base Team. Building Applica-
tions with the Linux Standard Base. Prentice
Hall, October 2004.

[5] Mandriva Linux Development Community.
MandrivaGroups, May 2005. Revision r1.10.

[6] Christian Schenk. MiKTEX 2.4 Manual, Febru-
ary 2004. Revision 2.4.1520.

[7] SUSE Linux AG, Nuremberg. SUSE Package
Conventions, January 2005. Revision 1.0.

http://people.mandrakesoft.com/~flepied/projects/rpmlint/
http://people.mandrakesoft.com/~flepied/projects/rpmlint/
http://rpmfind.net/

1012 TUGboat, Volume 0 (2060), No. 0

[8] TUG Working Group on a TEX Directory Struc-
ture. A directory structure for TEX files, June
2004. Version 1.1.

Name: tetex-breakurl

Summary: An extension to hyperref for line-breakable urls in DVIs

Version: 0.04

Release: 2

License: LPPL

Group: Productivity/Publishing/TeX/Base

URL: http://www.ctan.org/tex-archive/macros/latex/contrib/breakurl/

Requires: tetex

Distribution: SuSE 9.0 (i586)

Source: %{name}-%{version}.tar.bz2

BuildRoot: %{_tmppath}/%{name}-%{version}-root

BuildArch: noarch

%define texmf /usr/local/share/texmf

%description

This package provides a command much like hyperref’s \url that

typesets a URL using a typewriter-like font. However, if the dvips

driver is being used, the original \url doesn’t allow line breaks in

the middle of the created link: the link comes in one atomic piece.

This package allows such line breaks in the generated links.

Note that this package is intended only for those using the dvips

driver. Users of the pdflatex driver already have this feature.

%prep

%setup -q -n breakurl

%build

latex breakurl.ins

latex breakurl.dtx

latex breakurl.dtx

%install

rm -rf $RPM_BUILD_ROOT

mkdir -p $RPM_BUILD_ROOT/%{texmf}/tex/latex/breakurl

cp breakurl.sty $RPM_BUILD_ROOT/%{texmf}/tex/latex/breakurl

mkdir -p $RPM_BUILD_ROOT/%{texmf}/doc/latex/breakurl

cp README breakurl.{dvi,pdf} $RPM_BUILD_ROOT/%{texmf}/doc/latex/breakurl

%clean

rm -rf $RPM_BUILD_ROOT

%files

%defattr(-,root,root,-)

%{texmf}/tex/latex/breakurl/breakurl.sty

%doc %{texmf}/doc/latex/breakurl/README

%doc %{texmf}/doc/latex/breakurl/breakurl.dvi

%doc %{texmf}/doc/latex/breakurl/breakurl.pdf

%changelog

* Mon Jul 4 2005 Tristan Miller <psychonaut@nothingisreal.com> 0.04-1

- Initial build.

Listing 9: The complete breakurl.spec file

TUGboat, Volume 0 (2060), No. 0 1013

� Tristan Miller
German Research Center for Artificial Intelligence

(DFKI GmbH)
Postfach 20 80
67608 Kaiserslautern, Germany
Tristan.Miller@dfki.de

http://www.dfki.uni-kl.de/~miller/

	Background
	The evolution of package management systems
	Package management and TeX
	RPM versus other package managers
	About this article

	RPM basics
	RPM files and where to find them
	Installing, upgrading, and removing packages
	Getting information on packages

	Creating RPM packages
	First-time setup
	Preparing the TeX package source
	Writing the spec file
	The Header stanza
	The Prep stanza
	The Build stanza
	The Install stanza
	The Files stanza
	The Scripts stanza
	The Changelog stanza

	Building the RPM

	Advanced topics
	Bibliography

