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Abstract

For many years, the non-monotonic reasoning commu-
nity has focussed on highly expressive logics. Such logics
have turned out to be computationally expensive, and have
given little support to the practical use of non-monotonic
reasoning. In this work we discuss defeasible logic, a
less-expressive but more efficient non-monotonic logic. We
report on two new implemented systems for defeasible
logic: a query answering system employing a backward-
chaining approach, and a forward-chaining implementation
that computes all conclusions. Our experimental evaluation
demonstrates that the systems can deal with large theories
(up to hundreds of thousands of rules). We show that defea-
sible logic has linear complexity, which contrasts markedly
with most other non-monotonic logics and helps to explain
the impressive experimental results. We believe that defea-
sible logic, with its efficiency and simplicity, is a good can-
didate to be used as a modelling language for practical ap-
plications, including modelling of regulations and business
rules.

1 Introduction

Nonmonotonic reasoning was originally introduced to
address certain aspects of commonsense reasoning, mainly
reasoning with incomplete information. The motivation was
to be able to “jump to conclusions” in cases where not all
necessary information is available, yet certain plausibleas-
sumptions can be made.

A great amount of research has been conducted in non-
monotonic reasoning [25, 1]. Despite many conceptual ad-
vances some negative aspects have become apparent. The
first one comes from the computational complexity analy-
sis: it turns out that most nonmonotonic reasoning systems
have high computational complexity [21, 15] which seems
to be contrary to the original motivation of “jumping to con-
clusions”. The second negative observation is the failure of

mainstream nonmonotonic systems to find their way into
applications. Only quite recently did applications in rea-
soning about action [14, 22, 31] and the solution of NP-hard
problems [27] appear.

Our paper is not concerned with the classes of nonmono-
tonic reasoning approaches mentioned above. Rather, it fo-
cuses on another research stream within nonmonotonic rea-
soning – an often neglected one – which is prepared to sac-
rifice expressive power in favour of simplicity, efficiency
and easy implementability. Defeasible logic [28, 29] is an
early such logic, and the one we will be dealing with. It
is closely related [7] to inheritance networks [19], another
formalism with an efficient implementation [32]. Recently
several other systems in this class were proposed, for ex-
ample Courteous Logic Programs [17] and sceptical Logic
Programming without Negation as Failure [11]. There has
been recent evidence that this is a practicable approach [26].

Defeasible logic is a sceptical nonmonotonic reasoning
system based on rules and a priority relation between rules
that is used to resolve conflicts among rules, where possi-
ble. The logic has been recently subjected to a thorough
theoretical analysis by our research group. Results include
representational properties and properties of the proof the-
ory [3, 23], and establishing its relationship with negation-
as-failure [24], argumentation [16] and other logics [6].

Also, we have embarked on investigating its applicabil-
ity to the modelling and analysis of regulations and busi-
ness rules [4]. We believe that defeasible logic is suitable
for such practical applications because (i) its basic concepts
(simple rules and priorities) can be easily understood by
non-experts, and (ii) because the logic is sufficiently effi-
cient. More generally, we believe that these kinds of non-
monotonic approaches can be used as simple and efficient
modelling languages for situations where one needs to deal
quickly and flexibly with incomplete and conflicting infor-
mation (a point that is, independently, propagated by Grosof
[18]). Electronic commerce, where decisions (e.g. on pric-
ing or the granting of credit) need to be made in real time
24 hours a day, is a particularly promising domain [5].
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The contribution of this paper is to study and demon-
strate the efficiency of defeasible logic. In particular we de-
scribe two implemented systems: one for query evaluation,
and one that computes all conclusions of a given theory. For
each of the systems we describe their design, and provide a
summary of their experimental evaluation. We also show
that defeasible logic has linear complexity (in the number
of symbols in a defeasible theory).

2 Defeasible Logic

We begin by presenting the basic ingredients of defeasi-
ble logic1. A defeasible theory contains five different kinds
of knowledge: facts, strict rules, defeasible rules, defeaters,
and a superiority relation.

Factsare indisputable statements, for example, “Tweety
is an emu”. In the propositional logic, this might be ex-
pressed asemu.

Strict rulesare rules in the classical sense: whenever the
premises are indisputable (e.g. facts) then so is the conclu-
sion. An example of a strict rule is “Emus are birds”. Writ-
ten formally: emu! bird
Defeasible rulesare rules that can be defeated by contrary
evidence. An example of such a rule is “Birds typically fly”;
written formally: bird) flies:
The idea is that if we know that something is a bird, then
we may conclude that it flies,unless there is other evidence
suggesting that it may not fly.

Defeatersare rules that cannot be used to draw any con-
clusions. Their only use is to prevent some conclusions. In
other words, they are used to defeat some defeasible rules
by producing evidence to the contrary. An example is “If an
animal is heavy then it might not be able to fly”. Formally:heavy ; :flies
The main point is that the information that an animal is
heavy is not sufficient evidence to conclude that it doesn’t
fly. It is only evidence that the animalmaynot be able to fly.
In other words, we don’t wish to conclude:flies if heavy,
we simply want to prevent a conclusionflies.

The superiority relationamong rules is used to define
priorities among rules, that is, where one rule may override
the conclusion of another rule. For example, given the de-
feasible rulesr : bird ) fliesr0 : brokenWing ) :flies

1In this paper we restrict attention to propositional defeasible logic.

which contradict one another, no conclusive decision can be
made about whether a bird with a broken wing can fly. But
if we introduce a superiority relation> with r0 > r, then
we can indeed conclude that the bird cannot fly. It turns
out that we only need to define the superiority relation over
rules with contradictory conclusions.

It is not possible, in an extended abstract, to give a com-
plete formal description of the logic. However, we hope to
give enough information about the logic to make the discus-
sion of the implementations intelligible. The full versionof
the paper will contain more details. for more thorough treat-
ments.

A rule r consists of itsantecedent(or body) A(r) which
is a finite set of literals, an arrow, and itsconsequent(or
head) C(r) which is a literal. Given a setR of rules, we de-
note the set of all strict rules inR byRs, the set of strict and
defeasible rules inR byRsd, the set of defeasible rules inR
byRd, and the set of defeaters inR byRdft. R[q] denotes
the set of rules inR with consequentq. If q is a literal,�q
denotes the complementary literal (ifq is a positive literalp
then�q is:p; and ifq is:p, then�q is p).

A defeasible theoryD is a triple(F;R;>) whereF is a
finite set of literals (calledfacts),R a finite set of rules, and> a superiority relation onR.

A conclusionof D is a tagged literal and can have one of
the following four forms:+�q, which is intended to mean thatq is definitely

provable inD (i.e., using only facts and strict rules).��q, which is intended to mean that we have proved
thatq is not definitely provable inD.+@q, which is intended to mean thatq is defeasibly
provable inD.�@q which is intended to mean that we have proved
thatq is not defeasibly provable inD.

Provability is based on the concept of aderivation (or
proof) inD = (F;R;>). A derivation is a finite sequenceP = (P (1); : : :P (n)) of tagged literals constructed by in-
ference rules. There are four inference rules (corresponding
to the four kinds of conclusion) that specify how a deriva-
tion can be extended. Here we briefly state the inference
rules for the two positive conclusions. (P (1::i) denotes the
initial part of the sequenceP of lengthi):+�: We may appendP (i+ 1) = +�q if eitherq 2 F or9r 2 Rs[q] 8a 2 A(r) : +�a 2 P (1::i)

This means, to prove+�q we need to establish a proof
for q using facts and strict rules only. This is a deduction
in the classical sense – no proofs for the negation ofq need



to be considered (in contrast to defeasible provability be-
low, where opposing chains of reasoning must be taken into
account, too).+@: We may appendP (i+ 1) = +@q if either

(1)+�q 2 P (1::i) or
(2) (2.1)9r 2 Rsd[q]8a 2 A(r) : +@a 2 P (1::i) and

(2.2)���q 2 P (1::i) and
(2.3)8s 2 R[�q] either

(2.3.1)9a 2 A(s) : �@a 2 P (1::i) or
(2.3.2)9t 2 Rsd[q] such that8a 2 A(t) : +@a 2 P (1::i) andt > s

Let us work through this inference rule. To show thatq
is provable defeasibly we have two choices: (1) We show
thatq is already definitely provable; or (2) we need to argue
using the defeasible part ofD as well. In particular, we re-
quire that there must be a strict or defeasible rule with headq which can be applied (2.1). But now we need to consider
possible “attacks”, that is, reasoning chains in support of� q. To be more specific: to proveq defeasibly we must
show that�q is not definitely provable (2.2). Also (2.3) we
must consider the set of all rules which are not known to
be inapplicable and which have head�q (note that here we
consider defeaters, too, whereas they could not be used to
support the conclusionq; this is in line with the motivation
of defeaters given earlier). Essentially each such rules at-
tacks the conclusionq. Forq to be provable, each such rules must be counterattacked by a rulet with headq with the
following properties: (i)t must be applicable at this point,
and (ii) t must be stronger thans. Thus each attack on the
conclusionq must be counterattacked by a stronger rule.

3 A System for Query Evaluation

The query answering system,Deimos, is a suite of
tools that supports our ongoing research in defeasi-
ble logic. The centre of the system is the prover. It
implements a backward-chaining theorem prover for
defeasible logic based almost directly on the infer-
ence rules, such as that in Section 2. The system also
includes a program that generates the scalable theo-
ries used as test cases in this paper. It is accessible
though a command line interface and a CGI interface at
http://www.cit.gu.edu.au/˜arock/defeasible/

Defeasible.cgi The system is implemented in about
4000 lines of Haskell2.

Deimoshas been designed primarily for flexibility (so
that we can explore variants of defeasible logic) and trace-
ability (so that we can understand the computational be-

2Much of this code, along with the design strategy, is common to the
Phobosquery answering system for Plausible logic[30] which has been
developed in parallel withDeimos.

haviour of the logics and their implementations). Never-
theless, significant effort has been expended to make the
system reasonably efficient.

The present implementation performs a depth-first
search, with memoization and loop-checking, for a proof in
defeasible logic. Memoization allows the system to recog-
nise that a conclusion has already been proved (or dis-
proved), while loop-checking also detects when a conclu-
sion occurs twice in a branch of the search tree. Loop-
checking is necessary for the depth-first search to be com-
plete, whereas memoization is purely a matter of efficiency.
Loop-checking and memoization are implemented using a
balanced binary tree of data.

A proof is performed by a pair of mutually recursive
functions|-- and |- . The former defines the inference
rules, and the latter performs any state modifications (for
example, updating the record of conclusions proved and
I/O).

The function|-- is defined by an equation for each in-
ference rule in defeasible logic. Each equation is defined
in terms of logic combinators (&&&, ||| , fA andtE ) and
functions such asrsdq (rsdq t q returnsRsd[q]), and
beats (beats t u s returnsu > s). The+@ inference
rule above is expressed as:

(|--) t (Plus PS_d q) (|-) =
t |- Plus PS_D q |||

tE (rsdq t q) (\r ->
fA (ants t r)

(\a -> t |- Plus PS_d a)) &&&
t |- Minus PS_D (neg q) &&&
fA (rq t (neg q)) (\s ->

tE (ants t s)
(\a -> t |- Minus PS_d a) |||

tE (rsdq t q) (\u ->
fA (ants t u)

(\a -> t |- Plus PS_d a) &&&
beats t u s))

The one-to-one correspondence between the inference
rule and its representation as a Haskell expression ensures
that the implementation is easy to verify and easy to modify
as new inference rules are developed for variants of defea-
sible logic. The system provides different definitions of|-
so that memoization and/or loop-checking can be turned off.
Similarly, only the logic combinators, which specify depth-
first search, need to be redefined to specify other search
strategies.

In fact, there are several searches required to prove+@p.
First there is the search for a (strict or defeasible) rule for p
whose body is proved defeasibly. Then there is the search
for a proof of�� �p. Then, a search for a rule for�p
whose body is proved defeasibly, and, finally, a search for
a rule forp that will overrule the rule for�p. The order



initializeSK = ;
while ( S 6= ; )

chooses 2 S
adds toK
case s of+@p:

delete all occurrences ofp in rule bodies
whenever a body with headh becomes empty

record+�h
CheckInference(+�h; S )�@p:

delete all rules wherep occurs in the body
whenever there are no more rules for a literalh

record��h
CheckInference(��h; S )

end case
end while

Figure 1. All conclusions algorithm

of these searches follows the order in the presentation of
the+@ inference rule. While this ordering is not always
the best – it is not possible to find a good ordering a priori
– the use of memoization and loop-checking minimize bad
effects of the search order.

A defeasible logic theory is stored in a data structure con-
taining: a balanced tree and array for mapping from textual
literal names to integral representations and back; an array
of booleans indexed by the literals to represent the facts;
parallel arrays to represent the consequent of, body of, and
set of indices of rules beaten by, each rule; and arrays, in-
dexed by head, of the indices of the rulesRs[q],Rsd[q] andR[q]. Access to the lists of rule indices required by any
of the inference rules can be gained in constant time; facts
can be tested in constant time and priorities can be tested
in O(logn) time wheren is the number of rules that a rule
beats (n will usually be small).

4 A System for Computing All Conclusions

The system that computes all conclusions, Delores, is
based on forward chaining, but this is only for the positive
conclusions. The negative conclusions are derived by a dual
process. The system is implemented in about 4,000 lines
of C. We begin by presenting the algorithm for defeasible
theories containing only defeasible rules (i.e. without strict
rules, defeaters or superiority relation).

In the algorithm presented in Figure 1,p ranges over
literals ands ranges over conclusions.K andS are sets

of conclusions.K accumulates the set of conclusions that
have been proved, whileS holds those proven conclusions
that have not yet been used to establish more conclusions.

To begin the algorithm we initialize the setS with those
conclusions that can immediately be established: all facts
are provable, while those literals with no rules for them are
unprovable. ThusS contains+@f for each factf and�@p
for each propositionp not appearing in the head of a rule.

The algorithm proceeds by modifying the rules in the
theory. When inferring positive consequences, the algo-
rithm is somewhat similar to unit resolution for definite
clauses in classical logic: when an atom is proved, it can
be eliminated from the bodies of all other definite clauses.
In this case, when a literal is established defeasibly it can
be deleted from the body of all rules. Similarly, when it is
established that a literalp cannot be proved then those rules
which havep as a pre-condition cannot be used to prove the
head, and so they can be deleted.

However, in inferring a positive conclusion+@p, de-
feasible provability is complicated, in comparison to def-
inite clauses, by the need to consider rules for� p. We
first define notation for the “uncomplicated” inference and
then relate it to defeasible provability. Let+�q denote
that9r 2 Rsd[q] 8a 2 A(r) : +@a and��q denote that8r 2 Rsd[q] 9a 2 A(r) : �@a. Thus we can conclude+�q
precisely when the body of a rule forq becomes empty, and��q precisely when there are no more rules forq.

If we examine the inference rule for+@, in the absence
of defeaters and superiority relation it can be simplified to+@p iff +�p or (+�p and ���p and ���p)
Similarly, we can simplify the inference rule for�@ to�@p iff ��p and (��p or +��p or + ��p)
Each time a statement such as+�p is inferred by the system
the statement isrecorded and we check to see whether either
of the above simplified inference rules can be applied, using
all recorded information. This task is performed byCheck-
Inference, which will add either+@p or�@p, if justified, to
the setS3.

The key to an efficient implementation of this algorithm
is the data structure used to represent the rules. It is exem-
plified (albeit incompletely) in Figure 2 for the theoryr1 : b; c; d) ar2 : :b; d;:e) ar3 : d;:e) a

Each rule body is represented as a doubly-linked list
(horizontal arrows in Figure 2). Furthermore, for each lit-
eral p there are doubly-linked lists of the occurrences ofp

3Note that defeasible logic will never infer both+@p and�@p [8].



in the bodies of rules (diagonal arrows). For each literalp,
there is a doubly-linked list of rules with headp (dashed ar-
rows). Each literal occurrence has a link to the record for
the rule it occurs in (not shown in Figure 2).

r1      a b c d

r2      a ¬b d ¬e

r3    ¬a d ¬e

d ¬eca

Figure 2. Data Structure for Rules

This data structure allows the deletion of literals and
rules in time proportional to the number of literals deleted.
Furthermore, we can detect in constant time whether a lit-
eral deleted was the only literal in that body, and whether a
rule deleted with headh was the only rule forh. Each literal
occurrence is deleted at most once, and the test for empty
body is made at most once per deletion. Similarly, each
rule is deleted at most once, and the test for no more rules
is made once per deletion. Thus the cost of the algorithm isO(N ), whereN is the number of literal occurrences inD.

This algorithm, for positive conclusions, is similar to
the bottom-up linear algorithm for determining satisfiabil-
ity of Horn clauses of Dowling and Gallier [12, 13]. One
difference is in the data structures: the Dowling-Gallier al-
gorithm keeps a count of the number of atoms in the body
of a rule, rather than keep track of the body. The latter re-
sults in greater memory usage, but allows us to reconstruct
the residue of the computation: the simplified rules that re-
main. This residue is useful in understanding the behaviour
of a theory.

When we admit strict rules, the algorithm is complicated
by� the need to consider four kinds of conclusions, instead

of two;� the relationship between+� and+@, and�� and�@; and� the fact that strict rules can be used for both definite
and defeasible reasoning.

The resulting algorithm has the same structure as Figure 1
but more details. The data structure also retains the same
structure, but there are more lists and strict rules are repre-
sented twice.

The algorithm extends to general defeasible theories
through the use of a pre-processing transformation that

eliminates all uses of defeaters and superiority relation.The
transformation was designed to provide incremental trans-
formation of defeasible theories, and systematically uses
new atoms and new defeasible rules to simulate the elim-
inated features. Presentation of the transformation occupies
too much space to give it here. Parts of the transformation
were presented in [3]. A full treatment of the transforma-
tion, including proofs of correctness and other properties, is
presented in [2].

The transformation can increase the size of the theory by
at most a factor of 12. Furthermore, the time taken to pro-
duce the transformed theory is linear in the size of the input
theory. Consequently, the implementation of full defeasi-
ble logic by first transforming the input theory to a theory
without defeaters and superiority statements, and then ap-
plying an algorithm like Figure 1 to the transformed theory
provides a linear implementation of defeasible logic.

Theorem 4.1 The consequences of a defeasible theoryD
can be computed inO(N ) time, whereN is the number of
symbols inD.

A more complete argument of correctness and complex-
ity analysis for the full algorithm will be presented else-
where.

5 d-Prolog

In addition to the two implementations described above,
there is another implementation of defeasible logic. d-
Prolog [10] is a query-answering interpreter for defeasible
logic implemented in about 300 lines of Prolog. Its intended
input is mostly small, non-recursive inheritance problems.
The strict rules are implemented directly as Prolog rules.
Thus when we time the execution of a theory with only strict
rules, we are measuring the speed of the underlying Prolog
system. The search for a defeasible proof follows the same
pattern as used inDeimos, but with no loop-checking or
memoization.

The interpreter is designed to allow experimentation, and
includes an implicit definition of the superiority relationin
terms of specificity; that capability was disabled for our ex-
periments. d-Prolog also treats strict rules slightly differ-
ently from the formulation of defeasible logic that we use,
and it has been modified so that it implements the same se-
mantics asDeimosand Delores.

Unfortunately, the d-Prolog implementation of defeasi-
ble logic is flawed. The interpreter follows the Prolog com-
putation rule and consequently has the same incompleteness
that Prolog has.

This behaviour will be visible in some of the experi-
ments. However, most of the experiments do not contain
cyclic dependencies among literals so that for these experi-
ments the flaw has no effect.



6 Experimental Evaluation

In the experiments, we ran d-Prolog compiled to Sicstus
Prolog 3.7 fastcode, using the default memory allocation.
The times presented in the experiments are those measured
by the Sicstus Prologstatisticsbuilt-in. When timing sev-
eral experiments in the same Prolog session the first experi-
ment consistently took significantly longer than later identi-
cal experiments. In our data we have omitted the first timing
in a session.

Deimosis compiled using the Glasgow Haskell Com-
piler 4.04, with optimization flags, and times are measured
using theCPUTimelibrary. The system begins with a stack
space of 40M and a heap of 100M. The lazy execution strat-
egy of Haskell can make timing of just part of an execution
difficult. Care has been taken to force the complete evalu-
ation of the theory data structure before starting timing of
a proof. This avoids mis-allocation of work that could be
deferred to run-time by the laziness of the language.

Delores is written in C and compiled usinggcc without
optimization flags. In the experiments, the atom and rule
symbol tables have size 1,000,000. Memory is allocated in
chunks of 65536 bytes. This system is still under develop-
ment: the implementation of the basic algorithm for strict
and defeasible rules is complete, but the implementation of
the pre-processing transformation still requires tuning.For
this reason we chose to measure both the full system and
the partial system that omits the transformation. Further-
more, the generation of artificial names by the transforma-
tion interacts badly with the current hash function, causing
congestion in the hash tables. This does not affect the time
required to perform inferences, but it substantially affects
the time to load a theory. This limited some of the experi-
ments we ran.

All experiments were performed on the same lightly
loaded Sun Ultra 2. Each timing datum is the mean of sev-
eral executions. There was no substantial variation among
the executions, except as noted.6.1 Design of Experiments

Our initial experiments are on parameterized problems
designed to test different aspects of the implementations.
We have not yet been able to create realistic random prob-
lems. Since defeasible logic has linear complexity, the ap-
proach of [9], which maps NP-complete graph problems to
default rules, is not applicable. In the experiments we focus
on defeasible inference.

The first group of problems test only undisputed infer-
ences. Inempty() there are no rules. Inchain(n), a0 is at
the end of a chain ofn rulesai+1 ) ai. In circle(n), a0
is part of a circle ofn rulesai+1 mod n ) ai. chains(n)
andcircles(n) are versions of the above using strict rules.

In tree(n,k), a0 is the root of ak-branching tree of depthn in which every literal occurs once. Indag(n,k), a0 is the
root of ak-branching tree of depthnk in which every literal
occursk times.

In levels-(n), there is a cascade ofn disputed conclu-
sions: there are rulestrue ) ai and ai+1 ) :ai, for0 � i < n. In levels(n), there are, in addition, superiority
statements stating that, for oddi, the latter rule is superior.
In teams(n), every literal is disputed, with two rules forai
and two rules for:ai, and the rules forai are superior to
the rules for:ai. This situation is repeated recursively to
a depthn. All the above problems involve only defeasible
rules. Inmix(m,n,k), there arem defeasible rules fora0
andm defeaters againsta0, where each rule hasn atoms in
its body. Each atom can be established by a chain of strict
rules of lengthk.6.2 Experimental Results

We use as a measure of problem size the total number
of non-label, non-arrow symbols in the theory, that is, the
sum of the number of literal occurrences and superiority
statements. The tables describe the time (in cpu seconds)
required to find the appropriate conclusion fora0. Note
that Delores finds conclusions for all literals, not simplya0,
whereasDeimosand d-Prolog terminate whena0 is proved.
However, our experiments are designed to exercise all rules
and literals, so that, for these experiments,Deimoswill have
conclusions memoized for all atoms.

The times forDeimosinclude time spent garbage col-
lecting, whereas the times for d-Prolog do not. This adds
significantly to the time in problems where the space usage
approaches the heap space allocated to the Haskell run-time
environment.

In the tables,1 denotes that the system will not termi-
nate,� denotes that the default memory allocation of Sicstus
Prolog was exhausted,- denotes that the experiment was
not performed because the runtime required was excessive,
? denotes that the experiment could not be performed. The
times recorded refer only to the computation time, and do
not include the time for loading the theory.

We begin by addressing the two query-answering imple-
mentations.

Comparison of the behaviour of d-Prolog on strict and
defeasible versions of the problems in the first group
demonstrates the expected overhead of interpretation wrt di-
rect execution. Nevertheless, d-Prolog is substantially more
efficient thanDeimoswhen there are no disputing rules (as
in chain(n) andtree(n,k)). However, when disputing rules
are common (as inlevels-(n), levels(n) and teams(n)) d-
Prolog performs badly, with time growing exponentially in
the problem size. In the table we only provide the data on
this behaviour forlevels-(n). The exponential behaviour can



Problem Deimos d-Prolog Delores Delores
Size (partial)

empty() 0 0.0 0.0 0.18 0.18
chains(n)
n = 25,000 50,001 3.12 0.10 8.61 0.50
n = 50,000 100,001 6.50 0.19 - 0.82
n = 75,000 150,001 10.47 0.28 - 1.11
n = 100,000 200,001 14.49 0.38 - 1.47
circles(n)
n = 25,000 50,000 3.32 1 7.98 0.24
n = 50,000 100,000 7.39 1 - 0.30
n = 75,000 150,000 10.63 1 - 0.35
n = 100,000 200,000 14.43 1 - 0.40
chain(n)
n = 25,000 50,001 17.54 3.22 6.38 0.24
n = 50,000 100,001 38.48 6.48 62.08 0.30
n = 75,000 150,001 57.28 9.63 - 0.36
n = 100,000 200,001 82.03 12.54 - 0.41
circle(n)
n = 25,000 50,000 8.55 1 6.03 0.24
n = 50,000 100,000 17.87 1 - 0.30
n = 75,000 150,000 27.75 1 - 0.36
n = 100,000 200,000 42.42 1 - 0.41
tree(n,k)
n=8, k=3 19,681 5.24 0.61 0.38 0.24
n=9, k=3 59,047 16.62 1.89 0.81 0.34
n=10, k=3 177,145 55.41 5.19 22.70 0.64
dag(n,k)
n=3, k=3 43 0.00 0.06 0.19 0.19
n=4, k=4 89 0.05 8.80 0.19 0.19
n=100, k=10 11,021 1.06 � 0.22 0.19
n=1,000, k=10 110,021 11.60 � 0.50 0.20
n=100, k=40 164,041 9.73 � 0.31 0.20

Figure 3. Undisputed inferences

be attributed to a duplication of work – for example, in (2.1)
and (2.3.3) of the+@ inference rule – that is repeated recur-
sively. Deimosavoids this duplication through memoiza-
tion.

d-Prolog shows its incompleteness when it loops oncir-
cle(n). d-Prolog was unable to executemix(m,n,k), due to
an incompatibility with the underlying Prolog system.

For the problems under discussion,Deimosexercises all
rules. In these and other experiments, when space is not
an issue, the time forDeimosgrows atO(N logN ), as ex-
pected (the loop-checking contributes thelogN factor). For
some of the problems, likechain() and levels(), the loop-
checking and memoization ofDeimoshas no effect. In these
cases, a comparison of executions with and without these
features also reveals thelogN factor. For problems of size
about 200,000, memoization increased time by a factor of
about 10. In problemsdag()andteams()the use of memo-
ization, without loop-checking resulted in a small, but sig-
nificant speed-up over the loop-checking implementation.
All the same, loop-checking is necessary for completeness
and the advantage of memoization has already been seen, so
these time overheads are acceptable. The memory require-

Problem Deimos d-Prolog Delores
Size

levels-(n)
n=10 67 0.01 1.61 0.19
n=11 73 0.01 3.07 0.19
n=12 79 0.01 6.24 0.19
n=13 85 0.01 12.80 0.19
n=14 91 0.01 26.17 0.19
n=15 97 0.01 53.46 0.19
n=20 127 0.01 - 0.19
n=1,000 6,007 1.37 - 0.30
n=5,000 30,007 6.47 - 0.78
n=10,000 60,007 14.40 - -
n=30,000 180,007 46.44 - -
levels(n)
n=10 78 0.01 1.70 0.19
n=1,000 7,008 1.35 - 0.29
n=5,000 35,008 6.48 - 0.87
n=10,000 70,008 14.14 - -
n=30,000 210,008 48.67 - -
teams(n)
n=3 594 0.05 - 0.20
n=4 2,386 0.25 - 0.22
n=5 9,554 1.12 - 0.33
n=6 38,226 4.41 - 2.85
n=7 152,914 21.19 - -
mix(m,n,k)
n=10, k=0
m=100 4200 0.40 ? 0.22
m=1000 42000 3.83 ? 0.45
m=5000 210000 21.15 ? 1.36

Figure 4. Disputed inferences

ment for proofs, over and above theory storage, isO(m)
(measured using a heap profiling version of Hugs [20]) with
or without memoization and loop-checking, wherem is the
number of sub-goals required for the proof.

SinceDeimosexercises all rules in the problems we have
addressed, its advantage over Delores when responding to a
single query in more realistic situations has not been as-
sessed by these experiments. That will be addressed in fu-
ture work.

We now turn to an assessment of Delores.empty()
shows that Delores has a small but significant overhead on
start-up. This is the initialization ofS, which visits the en-
tire atom table. Above this overhead, the cost of initializa-
tion is proportional to the number of distinct atoms in the
theory. In the worst case, the initialization calls a memory
allocation routine for each atom.

Except for the direct execution of strict rules by Prolog,
the partial implementation of Delores is clearly the fastest of
the implementations, when it is applicable. Thus the basic
engine has excellent performance. The figures support the



claim that its complexity is linear in the size of the input
theory. In many of the experiments with full Delores the
linear complexity is also apparent.

However, it is apparent that the overhead introduced by
the pre-processing transformation varies quite significantly
from problem to problem and is sometimes extraordinar-
ily high, well above what would be expected for a trans-
formation that increases the size of the program only by
a factor of 12 (see, for example,tree(10,3)). The timings
of such problems were the only ones to vary significantly
when experiments were repeated. It turns out that the initial-
ization ofS consumes the bulk of this time. Furthermore,
it is on those problems that contain many different atoms
that Delores performs worst. This is evident in comparing
the behaviour of Delores ontree() anddag() problems. It
is also apparent when comparing the data for Delores on
the problems with undisputed inferences (Figure 3) – where
the complexity comes mostly from the number of atoms –
and problems with disputed inferences (Figure 4), where the
number of different atoms is smaller.

We have not yet properly accounted for Delores’s sensi-
tivity to the number of atoms. Certainly the transformation
exacerbates the situation by introducing many more atoms.
We could partly address the latter problem by implementing
defeaters directly, in a similar manner to defeasible rules.
This would require only minor extensions to the existing
system and would reduce the number of atoms by 1/4. We
could also redesign the transformation, trading incremen-
tality for a more parsimonious introduction of new atoms.
However, the main problem is the apparent nonlinearity of
initializing S and the source of this behaviour requires fur-
ther investigation.

Another point to note is that, in contrast to the query an-
swering systems, Delores performs slightly worse on prob-
lems with strict rules. The reason is that strict rules are du-
plicated and so the inferences performed by the system are
effectively doubled.

7 Conclusion

We have presented two new implementations of de-
feasible logic, based on substantially different techniques.
Our experiments on query-answering implementations have
demonstrated that bothDeimosand the existing d-Prolog
system can handle very large rule sets, although d-Prolog
is effective on only a narrow range of rule sets.Deimosis
clearly superior in the more realistic situations when some
rules conflict.

We have seen that the complexity of computing conse-
quences in defeasible logic is linear in the size of the input
theory. Our experiments with the partial implementation of
Delores have confirmed this claim. Indeed the partial im-
plementation of Delores was clearly the faster system in al-

most all experiments on which it could be run. However,
the transformation implemented in full Delores did not be-
have linearly. Since theoretically it is of linear complexity,
there is clearly an engineering issue to be addressed here.

In summary, bothDeimosand Delores show promise
as high-speed implementations of defeasible logic, and
Deimoshas already partly fulfilled its promise. Conse-
quently it appears that defeasible logic provides rule pri-
oritization and defeasible reasoning in an efficiently imple-
mentable way.

Work is continuing on both systems. ForDeimos, we are
implementing memoization using mutable arrays, instead
of a balanced tree, in order to eliminate theO(logn) fac-
tor. For Delores, we are addressing the problems of ini-
tialization and the pre-processing transformation that were
exposed by our experimental evaluation, and work is pro-
ceeding on a better implementation of the hash tables used
when loading a theory.
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[27] I. Niemelä and P. Simons. Smodels – an implemen-
tation of the stable model and well-founded seman-
tics for normal logic programs. InProc. 4th Interna-
tional Conference on Logic Programming and Non-
monotonic Reasoning, LNAI 1265, Springer-Verlag,
420–429.

[28] D. Nute. Defeasible Reasoning. InProc. 20th Hawaii
International Conference on Systems Science, IEEE
Press 1987, 470–477.

[29] D. Nute. Defeasible Logic. In D.M. Gabbay, C.J. Hog-
ger and J.A. Robinson (eds.):Handbook of Logic in
Artificial Intelligence and Logic Programming Vol. 3,
Oxford University Press 1994, 353–395.

[30] A. Rock and D. Billington. A propositional Plausi-
ble Logic implementation in Haskell. InProc. Aus-
tralasian Computer Science Conference, 2000, 204–
210.

[31] M. Shanahan.Solving the Frame Problem: A Math-
ematical Investigation of the Common Sense Law of
Inertia. MIT Press 1997.

[32] L.A. Stein. Resolving Ambiguity in Nonmono-
tonic Inheritance Hierarchies.Artificial Intelligence
55(1992): 259-310.


