Efficient Defeasible Reasoning Systems

M.J. Maher, A. Rock, G. Antoniou, D. Billington, T. Miller
School of Computing & Information Technology
Griffith University
QLD 4111, Australia
{mjm,arock,ga,db,xerxé@cit.gu.edu.au

Abstract mainstream nonmonotonic systems to find their way into
applications. Only quite recently did applications in rea-
For many years, the non-monotonic reasoning commu- soning about action [14, 22, 31] and the solution of NP-hard
nity has focussed on highly expressive logics. Such logicsproblems [27] appear.
have turned out to be computationally expensive, and have  Qur paper is not concerned with the classes of nonmono-
given little support to the practical use of non-monotonic tonic reasoning approaches mentioned above. Rather, it fo-
reasoning. In this work we discuss defeasible logic, a cuses on another research stream within nonmonotonic rea-
less-expressive but more efficient non-monotonic logic. Wesoning — an often neglected one — which is prepared to sac-
report on two new implemented systems for defeasiblerifice expressive power in favour of simplicity, efficiency
logic: a query answering system employing a backward- and easy implementability. Defeasible logic [28, 29] is an
chaining approach, and a forward-chainingimplementation early such logic, and the one we will be dealing with. It
that computes all conclusions. Our experimental evalumatio s closely related [7] to inheritance networks [19], anothe
demonstrates that the systems can deal with large theoriesormalism with an efficient implementation [32]. Recently
(up to hundreds of thousands of rules). We show that defeaseveral other systems in this class were proposed, for ex-
sible logic has linear complexity, which contrasts markedl ample Courteous Logic Programs [17] and sceptical Logic
with most other non-monotonic logics and helps to explain Programming without Negation as Failure [11]. There has
the impressive experimental results. We believe that eefeabeen recent evidence that this is a practicable approagh [26
sible logic, with its efficiency and simplicity, is a good €an Defeasible logic is a sceptical nonmonotonic reasoning
didate to be used as a modelling language for practical ap- system based on rules and a priority relation between rules
plications, including modelling of regulations and busise  that is used to resolve conflicts among rules, where possi-
rules. ble. The logic has been recently subjected to a thorough
theoretical analysis by our research group. Results irclud
representational properties and properties of the prasf th
1 Introduction ory [3, 23], and establishing its relationship with negatio
as-failure [24], argumentation [16] and other logics [6].
Nonmonotonic reasoning was originally introduced to  Also, we have embarked on investigating its applicabil-
address certain aspects of commonsense reasoning, mainiyy to the modelling and analysis of regulations and busi-
reasoning with incomplete information. The motivationwas ness rules [4]. We believe that defeasible logic is suitable
to be able to “jump to conclusions” in cases where not all for such practical applications because (i) its basic cptsce
necessary information is available, yet certain plausble  (simple rules and priorities) can be easily understood by
sumptions can be made. non-experts, and (ii) because the logic is sufficiently effi-
A great amount of research has been conducted in noncient. More generally, we believe that these kinds of non-
monotonic reasoning [25, 1]. Despite many conceptual ad-monotonic approaches can be used as simple and efficient
vances some negative aspects have become apparent. Theodelling languages for situations where one needs to deal
first one comes from the computational complexity analy- quickly and flexibly with incomplete and conflicting infor-
sis: it turns out that most nonmonotonic reasoning systemsmation (a point thatis, independently, propagated by Groso
have high computational complexity [21, 15] which seems [18]). Electronic commerce, where decisions (e.g. on pric-
to be contrary to the original motivation of “jumping to con- ing or the granting of credit) need to be made in real time
clusions”. The second negative observation is the failfire 0 24 hours a day, is a particularly promising domain [5].



The contribution of this paper is to study and demon- which contradict one another, no conclusive decision can be
strate the efficiency of defeasible logic. In particularvee d made about whether a bird with a broken wing can fly. But
scribe two implemented systems: one for query evaluation,if we introduce a superiority relation with »* > r, then
and one that computes all conclusions of a given theory. Forwe can indeed conclude that the bird cannot fly. It turns
each of the systems we describe their design, and provide aut that we only need to define the superiority relation over
summary of their experimental evaluation. We also show rules with contradictory conclusions.
that defeasible logic has linear complexity (in the number  Itis not possible, in an extended abstract, to give a com-

of symbols in a defeasible theory). plete formal description of the logic. However, we hope to
give enough information about the logic to make the discus-

2 Defeasible Logic sion of the |mplemgntat|ons |nthI|g|bIe. The full versioh
the paper will contain more details. for more thorough treat
ments.

We begin by presenting the basic ingredients of defeasi- A ryle » consists of itsantecedentor body) A (i) which
ble logic'. A defeasible theory contains five different kinds is a finite set of literals, an arrow, and itensequentor

of knowledge: facts, strict rules, defeasible rules, defsa head C'(r) which is a literal. Given a se of rules, we de-
and a superiority relation. note the set of all strict rules iR by R,, the set of strict and
Factsare indisputable statements, for example, “Tweety yefeasible rules i by R, the set of defeasible rules i
is an emu”. In the propositional logic, this might be ex- by R4, and the set of defeaters Riby Ry R[q] denotes
pressed asmu. the set of rules irkR with consequeni. If ¢ is a literal,~¢

Strict rulesare rules in the classical sense: whenever the genotes the complementary literal ifs a positive literap
premises are indisputable (e.g. facts) then so is the conclutheng is —p; and if ¢ is —p, then~q is p).

sion. An example of a strict rule is “Emus are birds”. Writ- A defeasible theory is a triple(F, R, >) whereF is a
ten formally: finite set of literals (calledacts, R a finite set of rules, and
emu — bird > a superiority relation orR.

A conclusiorof D is a tagged literal and can have one of

Defeasible rulesre rules that can be defeated by contrary . )
the following four forms:

evidence. An example of such a rule is “Birds typically fly”;

written formally: +Agq, which is intended to mean thatis definitely

bird = flies. provable inD (i.e., using only facts and strict rules).

The idea is that if we know that something is a bird, then
we may conclude that it fliesinless there is other evidence
suggesting that it may not fly

—Ag, which is intended to mean that we have proved
thatq is not definitely provable irD.

Defeatersare rules that cannot be used to draw any con- +0q, which is intended to mean thatis defeasibly
clusions. Their only use is to prevent some conclusions. In provable inD.
other words, they are used to defeat some defeasible rules o
by producing evidence to the contrary. An example is “If an —dq which is intended to mean that we have proved
animal is heavy then it might not be able to fly”. Formally: thatq is not defeasibly provable ib.

Provability is based on the concept oflarivation (or
proof) in D = (F, R,>). A derivation is a finite sequence
The main point is that the information that an animal is £ = (P(1),...P(n)) of tagged literals constructed by in-
heavy is not sufficient evidence to conclude that it doesn't ference rules. There are four inference rules (correspgndi
fly. Itis only evidence that the animaiaynot be able to fly. o the four kinds of conclusion) that specify how a deriva-
In other words, we don'’t wish to concludeflies if heavy, tion can be extended. Here we briefly state the inference
we simply want to prevent a conclusigiies. rules for the two positive conclusionsP(1..¢) denotes the

The superiority relationamong rules is used to define initial part of the sequence of lengthq):
priorities among rules, that is, where one rule may override . .
the conclusion of another rule. For example, given the de- A We may append(i + 1) = +Aq if either

feasible rules g€ For .
dr € Ry[q] Va € A(r) : +Aa € P(1..9)

heavy ~ —flies

P bird = flies ) )

¥ brokenWing = —flies This means, to prove Ag we need to establish a proof
for ¢ using facts and strict rules only. This is a deduction
1in this paper we restrict attention to propositional deitsladogic. in the classical sense — no proofs for the negation reéed




to be considered (in contrast to defeasible provability be- haviour of the logics and their implementations). Never-
low, where opposing chains of reasoning must be taken intotheless, significant effort has been expended to make the

account, too). system reasonably efficient.
The present implementation performs a depth-first
+0: We may append’(: + 1) = +9gq if either search, with memoization and loop-checking, for a proof in
(1)+Aq e P(1..5)or defeasible logic. Memoization allows the system to recog-
(2) (2.1)3r € Ryqlg]Va € A(r) : +0a € P(1..i) and nise that a conclusion has already been proved (or dis-
(2.2)—A~q € P(1..¢) and proved), while loop-checking also detects when a conclu-
(2.3)¥s € R[~q] either sion occurs twice in a branch of the search tree. Loop-
(2.3.1)3a € A(s) : —0a € P(1..9) or checking is necessary for the depth-first search to be com-
(2.3.2)3t € R,qlq] such that plete, whereas memoization is purely a matter of efficiency.
Va € A(t) : +0a € P(1..7) andt > s Loop-checking and memoization are implemented using a
balanced binary tree of data.
Let us work through this inference rule. To show that A proof is performed by a pair of mutually recursive
is provable defeasibly we have two choices: (1) We show functions|-- and|- . The former defines the inference

thatq is already definitely provable; or (2) we need to argue ryles, and the latter performs any state modifications (for
using the defeasible part @f as well. In particular, we re-  example, updating the record of conclusions proved and
quire that there must be a strict or defeasible rule with head|/Q).

¢ Which can be applied (2.1). But now we need to consider  The function-- is defined by an equation for each in-
possible “attacks”, that is, reasoning chains in support of ference rule in defeasible logic. Each equation is defined
~q. To be more specific: to proug defeasibly we must  in terms of logic combinators&&, ||| , fA andtE ) and

show that\'q is not deflnltely provable (22) Also (23) We functions such assdq (rsdq tq returnsde[q]), and
must consider the set of all rules which are not known to peats (beats t u s returnsu > s). The+d inference
be inapplicable and which have heag (note that here we  ryle above is expressed as:

consider defeaters, too, whereas they could not be used to

support the conclusiog this is in line with the motivation  (|--) t (Plus PS_d q) (]-) =

of defeaters given earlier). Essentially each such sude t |- Plus PS_ D q |||

tacks the conclusiof. Forq to be provable, each such rule tE (rsdg t q) (\r ->

s must be counterattacked by a rulevith headq with the fA (ants t r)

following properties: (ix must be applicable at this point, (\a ->t |- Plus PS_d a)) &&&
and (i)t must be stronger than Thus each attack on the t |- Minus PS_ D (neg q) &&&
conclusion; must be counterattacked by a stronger rule. fA (rq t (neg q)) (\s ->

tE (ants t s)

(\a ->t |- Minus PS d a) |||
tE (rsdg t q) (\u ->
. . . . fA (ants t u)
The query answering systenDeimos is a suite of (a > t |- Plus PS_d a) &&&
tools that supports our ongoing research in defeasi- beats t u s)) -
ble logic. The centre of the system is the prover. It
implements a backward-chaining theorem prover for  The one-to-one correspondence between the inference
defeasible logic based almost directly on the infer- ryle and its representation as a Haskell expression ensures
ence rules, such as that in Section 2. The system alsqhat the implementation is easy to verify and easy to modify
includes a program that generates the scalable theogs new inference rules are developed for variants of defea-
ries used as test cases in this paper. It is accessiblgiple logic. The system provides different definitiong-of
though a command line interface and a CGl interface at s that memoization and/or loop-checking can be turned off.

3 A System for Query Evaluation

http:/fwww.cit.gu.edu.au/"arock/defeasible/ _ Similarly, only the logic combinators, which specify depth
Defeasible.cgi The system is implemented in about first search, need to be redefined to specify other search
4000 lines of Haskell strategies.

Deimoshas been designed primarily for flexibility (so In fact, there are several searches required to praye

that we can explore variants of defeasible logic) and trace-First there is the search for a (strict or defeasible) rutefo
ability (so that we can understand the computational be-whose body is proved defeasibly. Then there is the search

2Much of this code, along with the design strategy, is comnooiiné for a prOOf of —A ~ P Then, a search for a rule ferp

Phobosquery answering system for Plausible logic[30] which hasrbe ~ Whose body is prQVEd defeasibly, and, finally, a search for
developed in parallel wittbeimos a rule forp that will overrule the rule for p. The order




initialize S of conclusions.X accumulates the set of conclusions that

K= have been proved, whilg holds those proven conclusions
that have not yet been used to establish more conclusions.
while (S #£0) To begin the algorithm we initialize the sgtwith those
chooses € § conclusions that can immediately be established: all facts
addsto K are provable, while those literals with no rules for them are
case s of unprovable. Thug contains+9f for each factf and—dp
+0p: for each propositiop not appearing in the head of a rule.
delete all occurrences of in rule bodies The algorithm proceeds by modifying the rules in the
whenever a body with head: becomes empty theory. When inferring positive consequences, the algo-
record+ch rithm is somewhat similar to unit resolution for definite
Checkinferenceg-ah, S') clauses in classical logic: when an atom is proved, it can
—0p: be eliminated from the bodies of all other definite clauses.
delete all rules wherey occurs in the body In this case, when a literal is established defeasibly it can
whenever there are no more rules for a literal be deleted from the body of all rules. Similarly, when it is
record—ch established that a literalcannot be proved then those rules
Checkinferencetoh, S) which havep as a pre-condition cannot be used to prove the
end case head, and so they can be deleted.
end while However, in inferring a positive conclusiopdp, de-

feasible provability is complicated, in comparison to def-
inite clauses, by the need to consider rules~fqr. We
first define notation for the “uncomplicated” inference and
then relate it to defeasible provability. Letoq denote
that3r € R;q[¢] Va € A(r) : +Ja and —cog¢ denote that
of these searches follows the order in the presentation ofvr € R,a[g] 3a € A(r) : —0a. Thus we can concludecg
the +0 inference rule. While this ordering is not always Precisely when the body of a rule fgpbecomes empty, and
the best — it is not possible to find a good ordering a priori —c¢ precisely when there are no more rulesdor
— the use of memoization and loop-checking minimize bad  If we examine the inference rule fard, in the absence
effects of the search order. of defeaters and superiority relation it can be simplified to
A defeasible logic theory is stored in a data structure con- .
taining: a balanced tree and array for mapping from textual +9p iff +Ap or (+op and —A~p and —o~p)
literal names to integral representations and back; aly arra
of booleans indexed by the literals to represent the facts;
parallel arrays to represent the consequent of, body of, and iff
set of indices of rules beaten by, each rule; and arrays, in-

dexed by head, of the _indices of the r_ul’é;iq], Rs.d[Q] and Each time a statement suchasp is inferred by the system
Rlg]. Access to the lists of rule indices required by any the statement icorded and we check to see whether either
of the inference rules can be gained in constant time; factSof the above simplified inference rules can be applied, using
can be tested in constant time and priorities can be testedy| recorded information. This task is performed ®feck-

in O(log n) time wheren is the number of rules that a rule  |hference which will add either+dp or —dp, if justified, to

Figure 1. All conclusions algorithm

Similarly, we can simplify the inference rule ferd to

—Ap and (—op Of +A~p OF 4 o~p)

beats § will usually be small). the sets8.
The key to an efficient implementation of this algorithm
4 A System for Computing All Conclusions is the data structure used to represent the rules. It is exem-

plified (albeit incompletely) in Figure 2 for the theory
The system that computes all conclusions, Delores, is

based on forward chaining, but this is only for the positive e bed= a
conclusions. The negative conclusions are derived by a dual rz: b, ;l’ me= a
r3 ,e=  a

process. The system is implemented in about 4,000 lines
of C. We begin by presenting the algorithm for defeasible
theories containing only defeasible rules (i.e. withotitst
rules, defeaters or superiority relation).

In the algorithm presented in Figure ,ranges over
literals ands ranges over conclusiongs and S are sets 3Note that defeasible logic will never infer bo#op and—ap [8].

Each rule body is represented as a doubly-linked list
(horizontal arrows in Figure 2). Furthermore, for each lit-
eral p there are doubly-linked lists of the occurrences of




in the bodies of rules (diagonal arrows). For each litgral  eliminates all uses of defeaters and superiority relafite
there is a doubly-linked list of rules with headdashed ar-  transformation was designed to provide incremental trans-
rows). Each literal occurrence has a link to the record for formation of defeasible theories, and systematically uses
the rule it occurs in (not shown in Figure 2). new atoms and new defeasible rules to simulate the elim-
inated features. Presentation of the transformation desup
too much space to give it here. Parts of the transformation
were presented in [3]. A full treatment of the transforma-
tion, including proofs of correctness and other properiges
presented in [2].

The transformation can increase the size of the theory by
at most a factor of 12. Furthermore, the time taken to pro-
duce the transformed theory is linear in the size of the input
theory. Consequently, the implementation of full defeasi-
ble logic by first transforming the input theory to a theory
without defeaters and superiority statements, and then ap-
plying an algorithm like Figure 1 to the transformed theory
provides a linear implementation of defeasible logic.

This data structure allows the deletion of literals and Theorem 4.1 The consequences of a defeasible thedry

rules in time proportional to the number of literals deleted -5, pe computed i( ') time, where is the number of
Furthermore, we can detect in constant time whether a ”t'symbols inD.

eral deleted was the only literal in that body, and whether a

rule deleted with heatl was the only rule fok. Each literal A more complete argument of correctness and complex-
occurrence is deleted at most once, and the test for emptyity analysis for the full algorithm will be presented else-
body is made at most once per deletion. Similarly, each where.

rule is deleted at most once, and the test for no more rules

is made once per deletion. Thus the cost of the algorithmis§ d-Prolog

O(N), whereN is the number of literal occurrences fh

This algorithm, for positive conclusions, is similar to | aqdition to the two implementations described above,
the bottom-up linear algorithm for determining satisfiabil here is another implementation of defeasible logic. d-
ity of Horn clauses of Dowling and Gallier [12, 13]. One  prolog [10] is a query-answering interpreter for defeasibl
difference is in the data structures: the Dowling-Galliera  |ogic implemented in about 300 lines of Prolog. Its intended
gorithm keeps a count of the number of atoms in the body jnpyt is mostly small, non-recursive inheritance problems
of a rule, rather than keep track of the body. The latter re- The strict rules are implemented directly as Prolog rules.
sults in greater memory usage, but allows us to reconstructrhys when we time the execution of a theory with only strict
the residue of the computation: the simplified rules that re- ;o5 we are measuring the speed of the underlying Prolog
main. This residue is useful in understanding the behaviourgystem. The search for a defeasible proof follows the same
of a theory. pattern as used iDeimos but with no loop-checking or

When we admit strict rules, the algorithm is complicated emoization.
by The interpreter is designed to allow experimentation, and

« the need to consider four kinds of conclusions, instead Includes an implicit definition of the superiority relation

of two: terms of specificity; that capability was disabled for our ex
periments. d-Prolog also treats strict rules slightlyetiff

« the relationship betweeaA and+d, and—A and  ently from the formulation of defeasible logic that we use,

—0; and and it has been modified so that it implements the same se-
mantics aPeimosand Delores.

Unfortunately, the d-Prolog implementation of defeasi-
ble logic is flawed. The interpreter follows the Prolog com-
The resulting algorithm has the same structure as Figure Iputation rule and consequently has the same incompleteness
but more details. The data structure also retains the samehat Prolog has.
structure, but there are more lists and strict rules aresrepr This behaviour will be visible in some of the experi-
sented twice. ments. However, most of the experiments do not contain

The algorithm extends to general defeasible theoriescyclic dependencies among literals so that for these experi
through the use of a pre-processing transformation thatments the flaw has no effect.

Figure 2. Data Structure for Rules

o the fact that strict rules can be used for both definite
and defeasible reasoning.



6 Experimental Evaluation In tree(n,k), a, is the root of ak-branching tree of depth
n in which every literal occurs once. bag(n,k), ag is the

In the experiments, we ran d-Prolog compiled to Sicstus 0t of a@-branching tree of depthk in which every literal
Prolog 3.7 fastcode, using the default memory allocation. 0CCUrsk times.

The times presented in the experiments are those measured In levels-(n) there is a cascade f disputed conclu-
by the Sicstus Prologtatisticsbuilt-in. When timing sev- ~ sions: there are rule§ue = a; anda;11 = —a;, for
eral experiments in the same Prolog session the first experid < ¢ < n. In levels(n) there are, in addition, superiority
ment consistently took significantly longer than later ilen ~ Statements stating that, for oddthe latter rule is superior.
cal experiments. In our data we have omitted the first timing I teams(n) every literal is disputed, with two rules fag

in a session. and two rules for-a;, and the rules for; are superior to

Deimosis compiled using the Glasgow Haskell Com- the rules for—a;. This situation is repeated recursively to
piler 4.04, with optimization flags, and times are measured @ depthn. All the above problems involve only defeasible
using theCPUTimelibrary. The system begins with a stack fules. Inmix(m,n,k), there arem defeasible rules fou,
space of 40M and a heap of 100M. The lazy execution strat-andm defeaters againat, where each rule hasatoms in
egy of Haskell can make timing of just part of an execution its body. Each atom can be established by a chain of strict
difficult. Care has been taken to force the complete evalu-rules of lengthk.
ation of the theory data structure before starting timing of
a proof. This avoids mis-allocation of work that could be 6.2 Experimental Results
deferred to run-time by the laziness of the language.

Delores is written in C and compiled usiggc without We use as a measure of problem size the total number
optimization flags. In the experiments, the atom and rule of non-label, non-arrow symbols in the theory, that is, the
symbol tables have size 1,000,000. Memory is allocated insum of the number of literal occurrences and superiority
chunks of 65536 bytes. This system is still under develop- statements. The tables describe the time (in cpu seconds)
ment: the impIementation of the basic algorithm for strict required to find the appropriate conclusion for. Note
and defeasible rules is complete, but the implementation ofthat Delores finds conclusions for all literals, not simaly
the pre-processing transformation still requires tunif@.  whereaDeimosand d-Prolog terminate when is proved.
this reason we chose to measure both the full system andjowever, our experiments are designed to exercise all rules
the partial system that omits the transformation. Further- and literals, so that, for these experimemeimosrvi” have
more, the generation of artificial names by the transforma- conclusions memoized for all atoms.
tion interacts badly with the current hash function, cagsin The times forDeimosinclude time spent garbage col-
congestion in the hash tables. This does not affect the timeiecting, whereas the times for d-Prolog do not. This adds
required to perform inferences, but it substantially @ec  sjgnificantly to the time in problems where the space usage
the time to load a theory. This limited some of the experi- approaches the heap space allocated to the Haskell run-time
ments we ran. environment.

All experiments were performed on the same lightly |, the tablespo denotes that the system will not termi-
loaded Sun Ultra 2. Each timing datum is the mean of sev- pate x denotes that the default memory allocation of Sicstus
eral executions. There was no substantial variation amongprolog was exhausted, denotes that the experiment was

the executions, except as noted. not performed because the runtime required was excessive,
? denotes that the experiment could not be performed. The
6.1 Design of Experiments times recorded refer only to the computation time, and do

not include the time for loading the theory.

Our initial experiments are on parameterized problems  We begin by addressing the two query-answering imple-
designed to test different aspects of the implementations.mentations.
We have not yet been able to create realistic random prob- Comparison of the behaviour of d-Prolog on strict and
lems. Since defeasible logic has linear complexity, the ap- defeasible versions of the problems in the first group
proach of [9], which maps NP-complete graph problems to demonstrates the expected overhead of interpretatioriwrtd
default rules, is not applicable. In the experiments we$ocu rect execution. Nevertheless, d-Prolog is substantiatisem
on defeasible inference. efficient thanDeimoswhen there are no disputing rules (as

The first group of problems test only undisputed infer- in chain(n) andtree(n,k)). However, when disputing rules
ences. Irempty() there are no rules. Iohain(n), a, is at are common (as ikevels-(n) levels(n) and teams(n) d-
the end of a chain of rulesa;y1 = «;. In circle(n), ag Prolog performs badly, with time growing exponentially in
is part of a circle ofn rulesa;+1 mod n» = a;. chains(n) the problem size. In the table we only provide the data on
andcircles(n) are versions of the above using strict rules. this behaviour folevels-(n) The exponential behaviour can



Problem | Deimos | d-Prolog | Delores| Delores Problem| Deimos| d-Prolog | Delores
Size (partial) Size

e}r;npty(() \ 0 0.0 0.0 0.18 0.18 levels-(n)

chains(n _

n = 25,000 50,001 3.12 0.10 8.61 0.50 ”:10 67 0.01 1.61 0.19

n =50,000 100,001| 650 0.19 ; 0.82 n=11 73 0.01 3.07 0.19

n = 75,000 150,001| 10.47 0.28 - 1.11 n=12 79 0.01 6.24 0.19

n=100,000 | 200,001| 14.49 0.38 - 1.47 n=13 85 0.01 12.80 0.19

circles(n) n=14 91 0.01 26.17 0.19

n = 25,000 50,000 3.32 (3] 7.98 0.24 n=15 97 0.01 53.46 0.19

noos000 | 180000 1063| | .| om| | ™2 127|001 -| 019

- y ) . o0 - . _

n=100,000 | 200,000| 14.43 oo - 0.40 n=1,000 6,007 1.37 - 0.30

chain(n) n=5,000 30,007 6.47 - 0.78

n = 25,000 50,001 | 17.54 3.22 6.38 0.24 n=10,000 60,007| 14.40 - -

n = 50,000 100,001| 38.48 6.48 | 62.08 0.30 n=30,000 | 180,007| 46.44 - -

n = 75,000 150,001| 57.28 9.63 - 0.36 levels(n)

n_=|l(()0),000 200,001 82.03 12.54 - 0.41 n=10 78 0.01 1.70 0.19

circle(n _ )

n = 25,000 50,000 8.55 oo 6.03 0.24 n:1’888 37’882 éig’ 8;3

n =50,000 100,000| 17.87 o ) 0.30 n=s, S, : - :

h = 75,000 150,000| 27.75 oo - 0.36 n=10,000 70,008 14.14 - -

n=100,000 | 200,000| 42.42 oo - 0.41 n=30,000 | 210,008| 48.67 - -

tree(n,k) teams(n)

n=8, k=3 19,681 5.24 0.61 0.38 0.24 n=3 594 0.05 - 0.20

Tabks | 17| seas| s10| 2o70| oed| | "4 238 | 025 -| 022

g;g(n* 9 ' : : : : n=5 9,554 1.12 - 0.33

n=3, k=3 43 0.00 006 | 0.9 0.19 n=6 38,226  4.41 - 2.85

n=4, k=4 89 0.05 8.80 0.19 0.19 n=7 152,914 21.19 - -

n=100, k=10 11,021 1.06 % 0.22 0.19 mix(m,n,k)

n=1,000, k=10| 110,021| 11.60 * 0.50 0.20 n=10, k=0

n=100, k=40 164,041 9.73 * 0.31 0.20 m=100 4200 0.40 2 0.22
m=1000 42000|  3.83 2| 045
m=5000 210000 21.15 ? 1.36

Figure 3. Undisputed inferences

] o . Figure 4. Disputed inferences
be attributed to a duplication of work — for example, in (2.1)

and (2.3.3) of the-0 inference rule — that is repeated recur-

sively. Deimosavoids this duplication through memoiza- ment for proofs, over and above theory storageyisn)

tion. (measured using a heap profiling version of Hugs [20]) with
d-Prolog shows its incompleteness when it loopgion or without memoization and loop-checking, wherds the

cle(n). d-Prolog was unable to execut@x(m,n,k), due to number of sub-goals required for the proof.

an incompatibility with the underlying Prolog system. SinceDeimosexercises all rules in the problems we have
For the problems under discussi@eimosexercises all ~ addressed, its advantage over Delores when responding to a

rules. In these and other experiments, when space is nosingle query in more realistic situations has not been as-

an issue, the time fdbeimosgrows atO (N log N), as ex- sessed by these experiments. That will be addressed in fu-

pected (the loop-checking contributestbe N factor). For ture work.

some of the problems, likehain() andlevels() the loop- We now turn to an assessment of Deloresmpty()

checking and memoization 8feimoshas no effect. Inthese  shows that Delores has a small but significant overhead on

cases, a comparison of executions with and without thesestart-up. This is the initialization of, which visits the en-

features also reveals thexr V factor. For problems of size tire atom table. Above this overhead, the cost of initializa

about 200,000, memoization increased time by a factor oftion is proportional to the number of distinct atoms in the

about 10. In problemdag() andteams()the use of memo-  theory. In the worst case, the initialization calls a memory

ization, without loop-checking resulted in a small, but-sig allocation routine for each atom.

nificant speed-up over the loop-checking implementation.  Except for the direct execution of strict rules by Prolog,

All the same, loop-checking is necessary for completenessthe partial implementation of Delores is clearly the faisbés

and the advantage of memoization has already been seen, ghe implementations, when it is applicable. Thus the basic

these time overheads are acceptable. The memory requireengine has excellent performance. The figures support the



claim that its complexity is linear in the size of the input most all experiments on which it could be run. However,
theory. In many of the experiments with full Delores the the transformation implemented in full Delores did not be-

linear complexity is also apparent. have linearly. Since theoretically it is of linear complgxi
However, it is apparent that the overhead introduced bythere is clearly an engineering issue to be addressed here.
the pre-processing transformation varies quite signifigan In summary, bothDeimosand Delores show promise

from problem to problem and is sometimes extraordinar- as high-speed implementations of defeasible logic, and
ily high, well above what would be expected for a trans- Deimoshas already partly fulfilled its promise. Conse-
formation that increases the size of the program only by quently it appears that defeasible logic provides rule pri-
a factor of 12 (see, for examplaee(10,3). The timings  oritization and defeasible reasoning in an efficiently ieapl
of such problems were the only ones to vary significantly mentable way.
when experiments were repeated. Itturnsoutthat thelinitia ~ Work is continuing on both systems. Hoeimos we are
ization of S consumes the bulk of this time. Furthermore, implementing memoization using mutable arrays, instead
it is on those problems that contain many different atoms of a balanced tree, in order to eliminate #¢logn) fac-
that Delores performs worst. This is evident in comparing tor. For Delores, we are addressing the problems of ini-
the behaviour of Delores amee() anddag() problems. It tialization and the pre-processing transformation thatewe
is also apparent when comparing the data for Delores onexposed by our experimental evaluation, and work is pro-
the problems with undisputed inferences (Figure 3) — whereceeding on a better implementation of the hash tables used
the complexity comes mostly from the number of atoms — when loading a theory.
and problems with disputed inferences (Figure 4), where the
number of different atoms is smaller. _ Acknowledgements
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